Response time and water origin in a steep nested catchment in the Italian Dolomites

Journal: Hydrological Processes

Manuscript ID HYP-16-0376.R1

Wiley - Manuscript type: Research Article

Date Submitted by the Author: 03-Oct-2016

Complete List of Authors: Penna, Daniele; University of Florence, Department of Agricultural, Food and Forestry Systems
Zuecco, Giulia; University of Padova, Department of Land, Environment, Agriculture and Forestry
Crema, Stefano; National Research Council, IRPI
Trevisani, Sebastiano; University IUAV of Venice, DACC
Cavalli, Marco; CNR, IRPI;
Pianezzola, Luisa; University of Padova, Land, Environment, Agriculture and Forestry
Marchi, Lorenzo; CNR, IRPI;
Borga, Marco; University of Padova, Department of Land and Agroforest Environments;

Keywords: water origin, isotopes, electrical conductivity, flow pathways, nested catchment, time of rise
Response time and water origin in a steep nested catchment in the Italian Dolomites

Short title: Response time and water origin in a nested catchment

Daniele Penna¹, Giulia Zuecco², Stefano Crema³, Sebastiano Trevisani⁴, Marco Cavalli³, Luisa Pianezzola², Lorenzo Marchi³, Marco Borga²

¹ Department of Agricultural, Food and Forestry Systems, University of Florence, via San Bonaventura 13, 50145, Florence-Firenze, Italy.
² Department of Land, Environment, Agriculture and Forestry, University of Padova, viale dell’Università 16, 35020 Legnaro (PD), Italy
³ National Research Council (CNR) - Research Institute for Geo-Hydrological Protection (IRPI), Corso Stati Uniti 4, 35127, Padova, Italy
⁴ DACC Department, University IUAV of Venice, Dorsoduro 2206, 30123 Venezia, Italy

Corresponding author: Daniele Penna (daniele.penna@unifi.it)

Abstract

In this study we investigate the surface flow time of rise in response to rainfall and snowmelt events at different spatial scales and the main sources originating channel runoff and spring water in a steep nested headwater catchment (Rio Vauz, Italian Dolomites), characterized by a marked elevation gradient. We monitored precipitation at different elevations and measured water stage/streamflow at the outlet of two rocky subcatchments of the same size, representative of the upper part of the catchment dominated by outcropping bedrock, at the outlet of a soil-mantled and vegetated subcatchment of similar size but different morphology, and by the outlet of the main catchment. Hydrometric data are coupled with stable isotopes and electrical conductivity sampled from different water sources during five years, and used as tracers in end-member mixing analysis,
application of the two component mixing model and analysis of the slope of the dual-isotope regression line.

Results reveal that times of rise are slightly shorter for the two rocky subcatchments, particularly for snowmelt and mixed rainfall/snowmelt events, compared to the soil-mantled catchment and the entire Rio Vauz catchment. The highly-variable tracer signature of the different water sources reflects the geomorphological and geological complexity of the study area. The principal end-members for channel runoff and spring water are identified in rainfall and snowmelt, which are the dominant water sources in the rocky upper part of the study catchment, and soil water and shallow groundwater, which play a relevant role in originating baseflow and spring water in the soil-mantled and vegetated lower part of the catchment. Particularly, snowmelt contributes up to 64% ± 8% to spring water in the concave upper parts of the catchment and up to 62% ± 11% to channel runoff in the lower part of the catchment. These results offer new experimental evidences on how Dolomitic catchments capture and store rain water and meltwater, releasing it through a complex network of surface and subsurface flow pathways, and allow for the construction of a preliminary conceptual model on water transmission in snowmelt-dominated catchments featuring marked elevation gradients.

Keywords: time of rise; water origin; isotopes; electrical conductivity; flow pathways; nested catchment.

1 Introduction

Headwater catchments in mountain regions play a number of valuable environmental roles. Given their typical small size (< 10 km²) and morphological and pedological characteristics (steep hillslopes, narrow valley bottoms and shallow soils) they comprise source areas of water, sediments and solutes and, at the same time, act as transitory hydrological sinks (Sidle et al., 2000; Payn et al., 2012). Headwater streams are responsible of transport mechanisms for different materials including...
nutrients, organic matter, wood and aquatic species (Wipfli et al., 2007; Sando and Blasch, 2015)
affecting downstream water quality and ecosystem health (Bishop et al., 2008; Mueller et al., in
press). Mountain headwater catchments, especially those that are dominated by snowmelt and ice
melt dynamics, are generally water-rich but, often due to logistical inconveniences, are data-poor
(Beniston et al., 1997). Thus, our understanding of how mountain headwater catchments capture
and store rain water and meltwater and then release it through surface and subsurface flow
pathways is still meagre. Increasing our knowledge about fundamental processes such as the timing
of the stream response to rainfall and snowmelt events and the origin of water sources that generate
surface and subsurface runoff is therefore a critical step in order to improve water resources
management strategies in mountain regions, especially under the current global warming conditions
to which these environments are particularly sensitive (Knowles et al., 2015).

Catchment response time integrates the effects of all factors that control the travel time of water
input to the outlet, such as catchment size, morphology, slope, land cover, soil properties and
geology (Dingman, 2002). Therefore, catchment response time, expressed by the lag time between
rainfall or snowmelt (input) and streamflow (output), is an important indicator of the catchment
hydrological properties and provides useful insights to understand runoff generation processes
(Haga et al., 2005). The analysis of response time conducted in headwater catchments has revealed
that different controls act on lag times. For humid catchments where the hydrological response was
dominated by subsurface flow, Montgomery and Dietrich (2002) found that lag times increased
with catchment size and decreased with catchment slope. In granitic headwater catchments in Japan
draining areas up to 6.3 ha, Onda et al. (2001) found that peak streamflow occurred almost at the
same time than peak rainfall, but that in shale and serpentinite catchments with areas up to 5.3 and
7.3 ha lag times to peak streamflow were much longer. For other Japanese steep headwater
catchments underlain by granitic rock, Haga et al. (2005) identified two types of response time
related to different antecedent soil moisture conditions and rainfall amount and intensity: for events
with short lag time (<2 hours) saturation excess overland flow was dominant whereas for events
with longer lag time (>24 hours) saturated subsurface flow above the soil-bedrock interface was the
principal runoff generation process. However, Meyles et al. (2003) observed that lag times in a
small headwater catchment in UK were poorly related to antecedent conditions and were
predominantly a function of the characteristics of rainstorms. In the humid Maimai headwater
catchment in New Zealand, McGlynn et al. (2004) found that during a small rainfall event, runoff
was generated primarily in headwater riparian zones, streamflow peaks became damped and lag
times increased in a downstream direction consistently with catchment size. On the contrary, for a
large event, runoff was generated more uniformly and lag times were more consistent across scale
(McGlynn et al., 2004). Finally, in forested headwater catchments it was observed that pipe flow
can increase discharge from hillslopes and therefore decrease the lag times of the storm hydrograph
(Uchida et al., 2001).

The analysis of water origin and dominant hydrological pathways in headwater catchments can
greatly benefit from the use of environmental tracers, such as stable isotopes of water (²H and ¹⁸O)
and electrical conductivity (EC). Recent studies have adopted tracer-based techniques such as end-
member mixing analysis (EMMA) and mixing models to investigate water origin, mixing
processes, flow pathways and runoff components in meltwater-dominated (snowmelt and/or glacier
melt) mountain catchments. For instance, some researchers have employed isotopic and
hydrochemical tracers to assess the sources of streamflow and quantify snowmelt and glacier melt
contributions to runoff at the monthly or seasonal scale (Jeelani et al., 2013; Liu et al., 2013;
Ohlanders et al., 2013; Liu and Liao, in press), even for different years (Maurya et al., 2011; Liu et
al., 2012; Dahlke et al., 2014), during spring snowmelt (Jin et al., 2012), or melt-induced runoff
events (Engel et al., 2016; Penna et al., 2016). Other studies have used tracers to identify the role of
meltwater in spring recharge (Jeelani et al., 2010; Penna et al., 2014b; Šanda et al., 2014; Liu et al.,
2015; Meng et al., 2015) and to assess the impact of snowmelt in different parts of the catchment
For Peer Review

(Holko et al., 2013). Other opportunities to determine stream water source components and obtain insights into the catchment hydrological functioning derive from adopting the dual-isotope approach (Klaus et al., 2015), based on the analysis of the slope of δ²H-δ¹⁸O regression lines, which has been limitedly used in steep snowmelt-dominated headwater catchments.

Indeed, despite the amount of previous work in headwater catchments, very little is known about catchment response time, origin of water and the main hydrological flow pathways in high-elevation nested catchments characterized by a strong elevation gradient and different land cover. This is true especially in Dolomitic regions where karst processes noticeably affect storage and create preferential flow routes. In this paper, we use hydrometric and tracer data collected in the Rio Vauz Catchment, in the Italian Dolomites, to address the following questions:

i) are response times of nested catchments different according to the catchment size, slope and land cover?

ii) what are the main water sources that contribute to channel runoff and spring water at different spatial scales?

iii) what is the role of snowmelt on spring recharge and channel runoff in the upper part of the catchment?

2 Study area

2.1 Rio Vauz Catchment

The Rio Vauz Catchment (RVC, 1.9 km²) is located in the Dolomites, Eastern Italian Alps (Fig. 1). The site ranges in elevations between 1847 m a.s.l. at the outlet and 3152 m a.s.l. on the top of the main peak (Piz Boè). Average monthly temperatures vary between -5.7 °C in January and 14.1 °C in July. Mean annual precipitation is about 1220 mm, 49% is in form of snow. April, May and sometimes June are characterized by high flow conditions due to snowmelt but summer thunderstorms and autumn precipitation determine important flood events as well. The upper part of the catchment (from to the top to roughly 2200 m a.s.l.) is dominated by subvertical Dolomitic rock
cliff whereas the central and lower part are vegetated by alpine grassland and sparse European
larches and Norway spruces. The area is characterised by a prevalence of Triassic calcareous rocks
with characteristic peaks of stratified and structurally deformed dolomite rocks (Bosellini et al.,
2003; Doglioni and Carminati, 2008). The morphology of the study site is deeply influenced by the
geo-structural setting, both in relation to the different lithological geo-mechanical characteristics as
well as in relation to the characteristics of structural discontinuities (fractures, faults, strata,
lamination). The most resistant rocks, which outcrop in the upper part of the catchment, belong to
the dolomite and limestone formations (the main ones are “Dolomia Principale” and “Dolomia
Cassiana”). The rocks of the other formations, i.e., “Travenanzes” and “San Cassiano”, are weaker,
and this reflects in gentler slopes, strong deformation, widespread presence of landslides and
erosional processes (Fig. S1). The patterns of the stream network are deeply influenced by structural
lineaments, with main channels developed along major fault lines (Marchi et al., 2008; 2015). The
main aquifers are represented by carbonate aquifers corresponding to the “Dolomia Principale” and
“Dolomia Cassiana” formations; minor aquifers are formed by the quaternary deposits constituted
by scree slopes and alluvial and colluvial deposits. The hydrogeological conceptual framework of
the area can be exemplified as composed by two main superposed carbonate aquifers, with the
upper aquifer corresponding to “Dolomia Principale” and the lower one to “Dolomia Cassiana”,
respectively delimited at the bed by the lower permeability formations of “Travenanzes” and “San
Cassiano”. Both aquifers are characterized by the presence of free draining and dammed springs
(Williams and Ford, 2007), emerging at various elevations. The strata are mainly sub-horizontal,
slightly dipping South-East, toward the outlet of RVC. The two main dolomite aquifers can be
viewed as a triple-porosity system, in which the water storage and transmission are related to the
rock matrix porosity, structural discontinuities (fractures, strata, etc.) and karstic conduits.
Moreover, a possible discontinuous presence of ice bodies in the rock mass above 2600 m a.s.l.
(Mair et al., 2011; Böckli et al., 2012; Krainer et al., 2012; Carturan et al., 2016) may increase the
hydrogeological complexity of the catchment and influence the storage and movement of water.
2.2 Selected catchments

Within RVC, three subcatchments were selected for the experimental activities (Fig. 1): two rocky subcatchments representative of the upper part, Channel A (ChA) and Channel B (ChB), and one soil-mantled subcatchment in the mid-central part, Bridge Creek Catchment (BCC). ChA and ChB are located in the lower part of the first aquifer at higher elevation, corresponding to the “Dolomia Principale” formation; differently, BCC is located in the lower part of the second aquifer corresponding to the “Dolomia Cassiana” formation. The three subcatchments have similar size but different elevation, lithology, slope and land cover (Table I). Particularly, aerial imagery analysis based on the detection of vegetation cover as a proxy for soil presence indicates an extremely different distribution of soil between the two rocky subcatchments and BCC (Table I). Hypsometric curves highlight a morphological similarity between ChA and ChB, with more than 90% of the area of both catchments falling above 40% of the relative elevation whereas RVC and especially BCC show a more regular distribution and lower hypsometric integrals (Fig. S2). Previous experimental investigations have been conducted at BCC to understand the main runoff generation processes occurring during rainfall and snowmelt events (Penna et al., 2011; 2015; 2016). More information on RVC can be found in other studies (Penna et al., 2013; Camporese et al., 2014).

3 Materials and Methods

3.1 Hydro-meteorological data

The experimental data were collected during five years (2011-2015). Precipitation was measured by not-heated tipping buckets at four locations within RVC: at 2868 m, 2566 m, 2553 m and 1940 m a.s.l.. Rain gauges were typically operated between May and October of each year, except for the highest one which, due to the difficult accessibility of the upper part of the catchment for most of the year, was operated only from June or July to September of each year. In addition, precipitation and air temperature were measured all year round by two heated tipping buckets and temperature
For Peer Review

sensors located at 1645 m (Arabba village) and 2155 m a.s.l. (Pordoi Pass), approximately 2.5 km
on the East and on the West of RVC, respectively, and operated by the Agency for Environmental
Protection of the Veneto Region. For the visual analysis of hydrometric response and tracer
response in the study catchment over the entire monitoring period (Section 4.1) the inverse distance
weighting (IDW) interpolation method based on precipitation data from the Arabba and Pordoi Pass
stations was used. Water stage was measured by pressure transducers installed at the outlet of each
subcatchment and at 1888 m a.s.l., close to the outlet of RVC. Streamflow values were available
only for BCC where a V-notch weir is installed.

3.2 Sampling for EC and isotopic analysis

Samples for tracer analysis were manually collected from different water sources at various
locations (Fig. 1). Samples at ChA, ChB and upper RVC were taken from late June to early October
in 2011, 2012, 2013 whereas samples at BCC and lower RVC were collected all year round from
2011 to 2015 (approximately monthly from 2012 to 2015).

Bulk liquid precipitation during the snow-free months was sampled through rainfall collectors
located at ChB, upper RVC and by the rain gauge at BCC. Rainfall samplers were equipped with a
funnel, a layer of mineral oil to prevent evaporation, and were emptied approximately every month.
Shallow groundwater was sampled from two piezometers (named P17 and M26) in the lower part of
BCC installed at a depth of 0.60 m and 1.20 m from the soil surface, respectively, in the alluvial and
colluvial deposits bordering the creek. Soil water was sampled monthly from May to October from
a suction cup installed at 30 cm depth in the riparian zone in the lower part of BCC. Spring water
was sampled from one spring in the lower RVC, one spring in the mid-BCC, two springs in the
upper RVC, two springs at ChA and five springs at ChB. Channel runoff (stream water) was
sampled at five locations at RVC, two locations at BCC and ChA, and one location at ChB. Overall,
precipitation was sampled along an elevation gradient from 1940 m to 2868 m a.s.l., spring water
from 1917 m to 2947 m a.s.l. and channel runoff from 1845 m to 2848 m a.s.l.. Snow was sampled
occasionally in winter at BCC and lower RVC from the snowpack (entire snow core) or from the surface layer after snowfall events. Snow from residual snow patches was also sampled occasionally in summer at ChA and ChB. Snowmelt at BCC was sampled in March and April 2010-2012 from two 1-m² snowmelt samplers (Penna et al., 2016) located at 1943 m and 1957 m a.s.l., and in April and May 2013 by 16 passive capillary samplers (Penna et al., 2014a; Holko et al., 2013) spatially distributed over the riparian zone and lower hillslope zone of BCC. Snowmelt in the upper RVC was sampled from melting snow patches in summer 2011 and 2013. All sampling locations are depicted in Fig. 1.

Samples were collected using 50 ml high-density plastic bottles with a double cap and stored at 4°C. No headspace was left in the bottles whenever possible to minimize evaporation and thus isotopic fractionation. The isotopic composition was determined by laser absorption spectroscopy adopting strategies to increase accuracy and mitigate memory effects (Penna et al., 2010; 2012). The tested instrumental precision is 0.5‰ for δ^2H and 0.08‰ for δ^{18}O. Isotopic values are reported using the δ notation according to the SMOW2-SLAP2 reference scale. EC was measured in the field using a portable conductivity probe with a precision of \pm 0.1 μS/cm and converted to specific conductance (EC for water temperature to 25°C).

3.3 Event identification and computation of time of rise

The comparative analysis of time of rise, used as a proxy of the response time, in the four catchments was conducted for i) rainfall events, ii) snowmelt events, and iii) mixed events (snowmelt + rainfall) by computing the lag time between the start of the hydrograph rise after the rainfall or snowmelt input and the peak water stage (or the peak streamflow at BCC) (Dingman, 2002). Response time is usually assessed computing the lag time, defined as the time between rainfall centroid or peak rainfall and peak streamflow (Onda et al., 2001; Haga et al., 2005).

However, our intention in this study was not only to compare the hydrological dynamics of the four
catchments during rainfall events but also during snowmelt pulses, which typically occur without rainfall influence. Such a comparison calls for the use of a metric that does not require rainfall data. Moreover, preliminary analyses showed differences up to 26% among the various rain gauge measurements, related to the marked elevation range of the catchment. Thus, using the data from the rain gauge(s) closest to each stream gauge would not make the results easily comparable among the studied catchments whereas using an interpolated precipitation value would produce noticeable errors in the lag time computations. In addition, the lack of snowmelt intensity data would prevent to compute the lag time for snowmelt events. Therefore, in this context, time of rise is used as a tool to homogeneously characterize and compare the hydrological response of different catchments to different hydrological inputs.

The procedure to determine the three types of events was based on the detection of a rise in water stage/streamflow. As a preliminary step, we identified, for each catchment and each monitoring year, a snowmelt period (typically in spring at BCC, and in late spring-early summer at ChA and ChB and the outlet of the main catchment) based on the occurrence of regular diurnal cycles in water stage/streamflow (Lundquist et al., 2005). For each observed flow peak, we assessed i) the inclusion/exclusion from the snowmelt period; ii) the antecedent temperature, that refers to air temperature data recorded within 10 hours prior to the flow peak at the weather station closest to each subcatchment, corrected for the outlet elevation using the lapse rate of 0.6°C/100 m, and that must be > 0°C; iii) the antecedent rainfall, that refers to rainfall data recorded within 5 hours prior to the flow peak at the weather station closest to each subcatchment (Table II).

The computation of the times of rise was based on the analysis of water stage/streamflow time series by means of a peak detection function in Matlab® which identifies local maxima and minima. A threshold to filter out the signal noise, i.e., small fluctuations (around 1-3 mm) due to the instrumental precision and/or thermal drift occurring during low flow periods, was set. After a first automatic identification of peaks, a manual check was performed to refine the detection of minimum values of water stage (or discharge) data that could have been influenced by the noise.
The time of rise was then computed as the interval between the local minimum before the beginning of the rising limb of the water stage/or streamflow signal, and the subsequent peak. Each flow response for each catchment was assigned to one of the three event types.

3.4 Comparison of the slopes of the δ^2H-δ^{18}O regression lines

The linear regression between δ^2H and δ^{18}O data was computed for the different water sources (Table III), following the dual-isotope approach (Klaus and McDonnell, 2015). In order to test whether the slopes of pairs of sample groups (e.g., groundwater in piezometer M26 vs. groundwater in piezometer M27, snowmelt vs. spring water at BCC+lower RVC, snowmelt vs. spring water at ChA+ChB+upper RVC etc.) were statistically different, the test of the comparison of the slopes of δ^2H-δ^{18}O regression lines from two independent samples with a significance level of 0.01 (Howell, 2010) was applied.

3.5 Two-component mixing model

The estimate of the snowmelt vs. rainfall fraction in channel runoff and spring water was carried out through an isotope-based (2H) two-component mixing model (Pinder and Jones, 1969; Sklash and Farvolden, 1979). Assuming that channel runoff and spring water are a mixture of rainfall and snowmelt, the equations at the base of the two-component mixing model can be written as follows:

$$1 = sm + rf$$ \hspace{1cm} (Eq. 1)

$$\delta_{CR} = sm \cdot \delta_{SM} + rf \cdot \delta_{RF}$$ \hspace{1cm} (Eq. 2)

where sm and rf indicate the channel runoff fraction due to snowmelt and rainfall, respectively; the notation δ is the isotopic composition of each component; and the subscripts CR, SM and RF denote channel runoff, snowmelt and rainfall, respectively. Analogously, for spring water (SP), the following equations can be written:

$$\delta_{SP} = sm \cdot \delta_{SM} + rf \cdot \delta_{RF}$$ \hspace{1cm} (Eq. 3)

Eqs. 1-3 can be solved for the unknown sm as follows:
1 287 \[s_{m}(\%) = \frac{\delta_{CR} - \delta_{RF}}{\delta_{SM} - \delta_{RF}} \cdot 100 \]
(Eq. 4)

for channel runoff, and:

\[s_{m}(\%) = \frac{\delta_{SP} - \delta_{RF}}{\delta_{SM} - \delta_{RF}} \cdot 100 \]
(Eq. 5)

for spring water. The uncertainty of the estimated snowmelt fractions was computed according to the error propagation method (Genereux, 1998) at the 70% confidence interval. Based on the available dataset, the mixing model in the upper part of RVC was applied to five springs and the outlet of ChA sampled on 5 July 2011, using as \(\delta_{RF} \) the average isotopic composition of precipitation sampled by the two upper rainfall collectors for the period 5 July-4 August 2011, assuming that the isotopic composition in that period was similar to that in the days antecedent to 5 July. In the lower part of RVC, the mixing model was applied to channel runoff and spring data sampled on 17 May 2012 and 11 April 2014.

4 Results

4.1 Streamflow response and variability of time of rise

Runoff in the monitored rock channels and stream sections shows a clear response to precipitation and snowmelt inputs (representative examples are shown in Fig. 2). Runoff at the outlet of ChA and ChB is not existent or negligible during the winter months and is present in spring and summer only after rainstorms or as consequence of snowmelt (approximately 25% of the summer monitoring time). On the contrary, winter baseflow at BCC and the outlet of RVC is low but continuous. Hydrograph analysis for the monitored years typically reveals more rapid recessions at ChA and ChB compared to BCC and particularly RVC but a large variability in the hydrograph shape depending on storm duration, storm size and snowmelt intensity was observed (Fig. 2)

There is a relatively low variability of times of rise for all identified rainfall, snowmelt and mixed rainfall-snowmelt events among the four catchments (Fig. 3). Although the non-parametric Kruskal-Wallis one-way analysis of variance reveals significant differences in the median values among the
for Peer Review

313 differences are overall limited for each type of event. Particularly, response times are statistically
314 identical for the two rock channels for all types of events (non-parametric Mann-Whitney test,
315 p>>0.05, median of 1.0 and 6.0 hours for rainfall and snowmelt events, respectively, for both
316 subcatchments, and median of 5.2 and 6.0 for mixed events for ChA and ChB, respectively) and
317 different compared to those of BCC and RVC. BCC shows the longest median times of rise and the
318 highest variability for rainfall and mixed events (median of 3.2 and 7.2 hours, respectively), and
319 RVC the longest median times of rise for snowmelt events (median of 7.5 hours). Overall, the
320 shortest times of rise are observed for rainfall events, especially for ChA and ChB.
321

4.2 Tracer signature in different waters

323 The variability in the isotopic composition and EC of all waters sampled in the study catchments is
324 large (Fig. 4). Rain and winter snow have similar low values of EC but contrasting isotopic
325 composition, with rain and winter snow having the most enriched and the most depleted median
326 isotopic composition in the entire dataset, respectively. The signature of snowmelt is more variable
327 and more enriched than winter snow but still more depleted than summer snow. However, the EC
328 values are similar. Spring water and channel runoff at ChA, ChB and upper RVC have noticeably
329 lower EC compared to BCC and RVC but more similar isotopic composition although much more
330 variable in the former sites. Shallow groundwater and soil water are the sources with the highest
331 variability in EC.
332
333 The tracer signature in the water sources sampled in the catchment shows a clear seasonal
334 variability (Fig. 5). As expected, isotopes in rainfall are characterized by the seasonal effect
335 (Rozanski et al., 1993), with more enriched values during warm months and vice versa, and
336 differences up to more than 40% (Fig. 5, top panel left). The isotopic composition of channel
337 runoff and spring water at ChA and ChB shows large temporal variations, with the most depleted
values observed during the spring melting. Channel runoff, spring water and shallow groundwater at BCC and lower RVC follow a similar pattern, although more damped and slightly temporally-shifted compared to that of precipitation (Fig. 5, left panels). The isotopic composition of shallow groundwater shows a similar temporal trend to those, well temporally correlated, of channel runoff at BCC and lower RVC and the corresponding springs but piezometer M26 presents a higher variability in δ^2H compared to piezometer P17. The seasonal trend in EC at ChA, ChB, BCC and lower RVC is less clear except for the two piezometers that typically show the lowest values in late spring-early summer (Fig. 5, right panels). Channel runoff at RVC has generally lower, more variable and not well temporally correlated EC compared to channel runoff at BCC. The temporal trend in EC is more similar between the BCC and lower RVC springs compared to channel runoff, with the BCC spring presenting consistently higher values than the lower RVC spring. EC fluctuations in M26 show a higher amplitude and overall much lower values compared to P17.

4.3 EMMA and dual isotope analysis

The combined tracer signature of rainfall, snowmelt, soil water and shallow groundwater defines a mixing space that comprises all samples of channel runoff and spring water (Fig. 6). Springs and channel runoff at BCC and in the lower RVC plot close to soil water and partially to shallow groundwater, whereas springs and channel runoff in ChA, ChB and the upper RVC plot closer to rainfall and snowmelt. Springs and channel runoff in ChA, ChB and the upper RCV span a wide range in the isotopic composition, approximately between -55% and -115% whereas their EC has a relatively small range, roughly between 90 μS/cm and 190 μS/cm. On the contrary, springs and channel runoff at BCC and in the lower RVC show a much smaller variability in the isotopic composition, approximately between -80% and -100%, and a larger EC range, roughly between 150 μS/cm and 380 μS/cm. The only overlap between these two water groups is observed for some samples of channel runoff in the lower RVC during snowmelt periods.
The monthly-integrated rainfall samples collected over three seasons define a local meteoric water line (LMWL) that has the same slope (8.0, or very close to it considering the uncertainty) as the global meteoric water line (GMWL) but has a higher intercept (13.5‰ vs. 10.0‰) (Table III).

Unfortunately, fresh snow samples are not available and so the isotopic characterization of winter precipitation is not possible. Channel runoff and spring water at BCC and lower RVC show a narrower isotopic range compared to that of ChA, ChB and upper RVC. However, the statistical comparison of the slopes of regression lines indicate that both channel runoff groups have a slope equal to that of the LMWL. More interestingly, the comparison of the slopes of regression lines reveals that the slope of snowmelt samples is significantly different from that of spring water at BCC and lower RVC but equal to that of spring water at ChA, ChB and upper RVC. Finally, shallow groundwater in P17 and M26 plot well along the LMWL, have slope statistically equal to each other and to that of the LMWL and significantly different from that of soil water samples that are more enriched and plot partly below the LMWL (Table III).

4.4 Two-component mixing model results

The application of the two-component mixing model to spring water and channel runoff sampled in the two rocky subcatchments on 5 July 2011 reveals different contributions of snowmelt (Fig. 7). For springs SPR3, SPR4, SPR6 and SPR9, located in convex areas (Fig. 1), and for runoff sampled at the outlet of ChA, snowmelt fractions vary in a small range (56% - 64%) with comparable uncertainty values (between ±8% and ±10%). However, for SPR2, located on the divide between ChA and ChB, in a zone less prone to snow accumulation (Fig. 1), the snowmelt fraction is remarkably lower and uncertainty much higher (6%±21%). For other days later in the seasons when spring water in the upper RVC and ChA was sampled (28 September 2012 and 5 September 2013) the isotopic compositions of the springs (approximately between -62‰ and -65‰) was very similar to that of precipitation (approximately between -67‰ and -70‰) and the application of the mixing model allows the determination of the contribution of snowmelt to the samples.
model was not possible (Klaus and McDonnell, 2013). The mixing model applied to data from BCC and the lower part of RVC for two dates highlights marked differences in the snowmelt contributions as well (Fig. 8). Snowmelt fractions in channel runoff and spring water during late spring (17 May 2012) were very low or negligible (Fig. 8, top panel) whereas snowmelt played a much more important role in forming channel runoff and spring water during mid-spring (11 April 2014, Fig. 8, bottom panel). All other samples taken at BCC and lower RVC during the study period for which the mixing model application was possible have been reported in a previous study (Penna et al., 2016).

5 Discussion

5.1 Controls on response times

The smaller variability in water stage values of ChA, especially, and ChB, and the occurrence of more similar maxima over the study years compared to the other two catchments (not shown) suggests that the rock channels follow relative quickly subsurface flow pathways and have a storage system that can be saturated more often and more rapidly than that of BCC and RVC. On the contrary, the runoff response of BCC and RVC is more sensitive to the intensity of individual water inputs, and the variability of streamflow response is particularly marked at BCC. These differences in runoff response reflect quite well the response timing of the four catchments (Fig. 3), with the same short times of rise for ChA and ChB and slightly longer times of rise for the other two catchments (especially longer for BCC during rainfall events). We relate this behaviour to the buffer effect produced by the greater soil cover area at BCC and RVC (and proportionally greater in BCC than RVC, Table I) compared to the two rock subcatchments, and the associated role of soil in regulating antecedent moisture conditions that can significantly affect the intensity (e.g., Penna et al., 2011; Nadal-Romero et al., in press) and the timing (Montgomery and Dietrich, 2002; Haga et al., 2005) of runoff response of soil-mantled catchments. Montgomery and Dietrich (2002) reported a weak correlation between catchment size, catchment slope and response time for the CB2
catchment in the Oregon Coast Range. Our data are too limited to perform a robust statistical
analysis but the poor relation that we found between average and median time of rise, catchment
slope and catchment area (not reported) let us hypothesize that other variables, such as the soil
cover, may have a greater influence on the runoff timing of the study catchment. Particularly, the
only slightly longer times of rise of RVC compared to the one order of magnitude smaller rocky
subcatchments, and only shorter times of rise at least for rainfall and mixed events compared to
BCC (Table I and Fig. 3) may be due to the compensating effects of fast response in subvertical
Dolomitic cliffs of the upper part of RVC and the delayed response in the soil-covered central and
lower part of the catchment. Moreover, the smaller difference in the median time of rise between
BCC and the two rocky subcatchments during snowmelt events compared to mixed events and,
especially, rainfall events can be due to the saturated conditions that BCC typically experiences
during the snowmelt period and that produce fast and marked streamflow response (Penna et al.,
2016).

The response times we found for the four study catchments are generally different from those
identified by other researchers in various small catchments worldwide, although the definition of
response time is not consistent with ours and therefore lag times are not directly comparable. For
instance, Onda et al. (2001) observed much longer response times for six catchments below 10 ha in
Japan whereas Talei et al. (2012) computed much shorter (< 1 hr) response times for a 0.65 ha
catchment in Singapore. Overall, the range of values identified for RVC and its subcatchments is
consistent with that reported by Montgomery and Dietrich (2002) for two unchanneled catchments
in the Oregon Coast Range, USA, although their catchments were one and two orders of magnitude
smaller than the ones presented in this study. These findings highlight the marked variability in lag
times and suggest that a combination of different processes controls the timing of runoff response in
catchments of different size, geological setting and morphometric characteristics.
5.2 Spatial and temporal variability of channel runoff, spring water and shallow groundwater

The noticeable variability in the isotopic composition and EC of all water sources sampled in this study (Fig. 4) reveals complex hydrochemical signatures and physical interactions between precipitation, surface waters and groundwater at RVC and its subcatchments, as recently observed in other high-elevation mountain catchments (Penna et al., 2014b; Fan et al., 2015; Fischer et al., 2015; Carturan et al., 2016). The lower EC in spring water and channel runoff at ChA, ChB and upper RVC suggests shorter contact with rocks and therefore faster water transmission compared to BCC and lower RVC, in agreement with shorter times of rise (Fig. 3). The isotopic composition of springs and channel runoff at BCC and RVC is little variable (Fig. 4) and relatively constant throughout the year, except during spring time when the observed depletion indicates the influence of snowmelt (Holko et al., 2013) (Fig. 5). This suggests the presence of a deeper flow component that facilitates the water-soil hydrochemical interactions leading to higher EC and damped isotope variability of channel runoff and springs compared to ChA and ChB. Moreover, the isotopic composition of the two springs is statistically identical to that of channel runoff at the BCC outlet (Penna et al., 2016) suggesting a similar origin and/or a connection between spring water and stream water in this subcatchment. On the contrary, the much higher isotopic variability of spring water and channel runoff at ChA, ChB and upper RVC overlapping more broadly with the isotopic signature of snowmelt than that of BCC and lower RVC, suggests a greater influence of snowmelt at those locations, consistently with their higher elevation. However, it must be considered that the different sample number and sampling times mainly during summer and not throughout the year as at BCC and lower RVC could affect this higher variability.

The highly seasonally variable isotopic composition and EC of shallow groundwater at BCC (Fig. 4), especially of M26 (more than 60% in δ^2H and 500 µS/cm, Fig. 5) that is quite different compared to that of P17 (Fig. 5), highlights the complex hydrochemical behaviour of groundwater even at the small spatial scale, indicating the need of further and more detailed investigations in this subcatchment.
5.3 Water origin and role of snowmelt

The mixing plot (Fig. 6) combining the isotopic composition and EC of all water samples indicates that rainfall, snowmelt, soil water and shallow groundwater act as end-members for channel runoff and spring recharge in the study area. However, given the limited spatial measurements of soil water and shallow groundwater, and the high variability of their response (Penna et al., 2015) and tracer signature (Penna et al., 2016) we cannot exclude that those sources are representative of a local situation affecting only the lower part of BCC but not significantly contributing to the main stream.

Summer snow samples have a δ^2H-δ^{18}O slope lower than 8 (Table III) revealing some kinetic fractionation due to sublimation/evaporation and/or isotopic exchange between liquid water and ice during the melting phase (Lee et al., 2010), whereas snowmelt samples taken in spring follow the LMWL (Table III) indicating negligible melt-freeze mass exchange between the solid and liquid phases during the snow metamorphism (Zhou et al., 2008). Despite these differences, the average and standard deviation of δ^2H and EC of summer snow plot entirely within the variability of snowmelt not allowing to distinguish summer snow as an individual end-member.

The position of ChA, ChB and RVC spring and channel runoff samples close to snowmelt and rainfall samples indicates a larger influence of these two end-members than for spring water and channel runoff at BCC and lower RVC which are more related to shallow groundwater and soil water (Fig. 6). This is reasonable considering the more limited distribution or even absence of soil cover in the upper part of the study catchment. The much larger range in δ^2H and smaller range in EC in spring and channel runoff samples at ChA, ChB and upper RVC corroborate this finding, because they reflect the influence of snowmelt and rainfall that show high variability in isotopic composition but low variability in EC, in contrast to BCC and lower RVC where spring and channel runoff samples reflect the high variability of soil water and shallow groundwater for both tracers.

These results agree well with recent findings at BCC that revealed a dominant contribution of pre-
event water (assumed to be a mixture of shallow groundwater and soil water) to streamflow during both rainfall- and snowmelt-runoff events (Penna et al., 2016). Furthermore, the significantly different δ^2H-δ^{18}O slope of snowmelt samples with respect to that of spring water at BCC and lower RVC but equal to that of spring water at ChA, ChB and upper RVC indicates a stronger linkage and a more direct influence of snowmelt on spring water in the upper part than in the lower part of the study catchment. The only connection between these two seemingly decoupled water systems is provided by the main stream which partially transfers downstream water inputs from the upper catchment and partly receives contributions from the lateral tributaries in the lower catchment, resulting in the tracer signature of samples from the lower RVC overlapping with that of channel runoff in ChA, ChB and BCC, especially during snowmelt periods (Fig. 6).

The importance of snowpack meltwater for groundwater recharge in the upper RVC is stressed by the high computed fractions of snowmelt in spring water (Fig. 7). Although these fractions refer to one sampling day only and analyses on a more extended dataset would be advisable, they are generally higher than the isotope-based proportions of snowmelt in spring water calculated for other high-elevation catchments in South-Western USA and Himalaya (Earman et al., 2006; Jeelani et al., 2010) and only slightly lower than those computed for a glacierized catchment in South Tyrol, Northern Italy (Penna et al., 2014b). The snowmelt fractions computed for ChA (Fig. 7) are much higher and slightly higher than those found in late and mid-spring, respectively, for channel runoff and spring water at BCC and RVC in the proximity of the outlet (Fig. 8). Interestingly, the snowmelt fraction observed in ChA is also noticeably higher, even considering uncertainty, than the average and maximum snowmelt fractions observed at the BCC outlet during six melt-induced runoff events in 2010, 2011 and 2012 (Penna et al., 2016), underlining the more relevant role of snowmelt on spring water and channel runoff in the upper than lower part of RVC.

5.4. Main limitations of the study
Despite the efforts played in the field by our group during the monitoring years, there are intrinsic limitations in this research that are mainly associated with the complexity of sampling waters in environments at high elevation and difficult accessibility, and that should be mentioned. Particularly, the monthly temporal resolution of sample collection in the upper part of the RVC can mask some variability in the tracer signature of water sources and hamper a more detailed understanding of the end-member temporal dynamics. Furthermore, a more even distribution of sampling locations along the main stream is advisable in order to detect relevant spatial changes in EC and isotopic composition due to lateral subsurface contributions. Additionally, more locations for soil water sampling are necessary in order to take into account the expected marked spatial variability of the tracer signature of the unsaturated zone in the soil-mantled portion of the catchment, and specifically in different landscape zones (e.g., riparian zone, hillslopes). Particularly, this issue has been addressed by our group sampling water sources, including soil water at different locations, at high temporal resolution for multiple tracers during different melt-induced runoff events at BCC in the 2016 snowmelt season (unpublished results).

6 Conclusions

The analysis of rainfall and channel hydrometric data coupled with environmental tracers sampled at different locations and elevations in the steep nested Rio Vauz Catchment (Eastern Italian Alps) allowed us to gain new insights into the timing of hydrological response at different spatial scales and the main water sources influencing spring recharge and channel runoff formation in Dolomitic headwater catchments as well as to make advancement in the comprehension of water flow pathways in these environments. As far as we know, this is the first experimental tracer-based study addressing these issues in a snowmelt-dominated mountain catchment featuring a marked elevation gradient. The two monitored rocky subcatchments in the upper RVC show overall shorter response times compared to the soil-mantled subcatchment and the catchment as a whole but differences in the
computed times of rise are small and appear to be mainly related to the land cover (soil mantled vs.
bare rock) and the associated hydrological processes. The high density of structural discontinuities
associated to fractures and stratification and the presence of karstic features where water can
infiltrate and reside, as well as the presence of a low-slope belt in the intermediate part of these
subcatchments, affect the hydrological response time of the channels laying at the base of the
subvertical Dolomitic cliffs, making it longer than the one expected on impervious bare rocks but
still faster than that of the monitored soil-mantled subcatchment. The large variability in the
isotopic composition and EC of several water sources sampled in various years reflects the
geological and geomorphological complexity of the study area. Our tracer results indicate rainfall,
snowmelt, shallow groundwater and soil water as the principal end-members for channel runoff
formation and spring recharge, although shallow groundwater and soil water might have a local
influence. Particularly, the end-member mixing analysis and the dual isotope approach suggest that
elevation and land cover affect the relative importance of these end-members in the various portions
of RVC, with soil water and shallow groundwater dominating in the soil-mantled BCC and rainfall
and snowmelt influencing more directly runoff and spring water in the rocky ChA and ChB
subcatchments. Current hydrometric and tracer results combined with previous investigations in the
study area reveal a complex pattern of hydrological connectivity and let us develop a preliminary
conceptual model of water transmission at RVC. This is important because it can be applied and/or
compared to other mountain catchments characterized by strong elevation gradients. The nested
catchment organization reflects the geological structure and supports the hypothesis of the presence
of two water circulation systems, hydrologically connected through the main channel but
characterized by different response times and tracer signature. The low EC and the high variability
of the isotopic composition of channel runoff and spring water in the two rocky subcatchments and
upper RVC, as well as the shorter response times than in BCC and lower RVC, indicate a poor
hydrochemical interaction between infiltrating rainfall and snowmelt and soil and/or rocks, and
limited and relatively fast subsurface flow pathways. Snowmelt is particularly important for the
springs localized in hollows and rainfall is more relevant for springs located on ridges, less prone to snow accumulation. On the contrary, rainfall and snowmelt infiltrate and are likely stored for longer times in the soil and subsoil of BCC and the lower part of RVC, contributing to recharge the unsaturated and shallow groundwater and representing important sources for baseflow and spring water. Here, the possible presence of a deep and slow subsurface flow component, related to the larger aquifer mainly corresponding to the “Dolomia Cassiana” formation, damps the timing of the hydrological response and leads to stronger hydrochemical interactions between water and soil, resulting in higher EC and reduced variability of the isotopic composition of channel runoff and springs. The influence of snowmelt is smaller and limited to intense snowmelt periods, whereas rainfall contributes most to channel runoff during intense rainfall events with wet antecedent conditions, due to overland flow on expanded saturated areas, especially in the small lateral tributaries draining into the lower part of the main stream.

These experimental results allowed us to obtain a preliminary overview of response times, water origin and transmission across this steep Dolomitic catchment. However, more detailed analyses from different perspectives are necessary in order to better understand the complex hydrogeological interplays that determine the connectivity network and regulate water flow in these aquifers. For instance, the application of multiple tracers (e.g., stable and unstable isotopes of water, major anions and cations, silica, radon etc.) at high frequency during specific field campaigns coupled with hydrogeological analyses can open new ways to conceptualize and interpret storage and movements of surface and subsurface water in partly karst mountain catchments featuring strong elevation gradients.

Acknowledgements

The research was partly supported by the grant “Bando 2014 per il finanziamento di attrezzature scientifiche finalizzate alla ricerca” (University of Padova) and by the DIBA NextData Project (Italian Ministry of University and Research). We thank many undergraduate, graduate and PhD
students who contributed to field work. The Agency for Environmental Protection of Veneto Region (ARPAV) is acknowledged for the meteorological data and logistical support.
References

http://mc.manuscriptcentral.com/hyp
doi:10.1029/2005JD006470

doi:10.1029/2005WR004236

doi:10.1002/hyp.7912

McGlynn, B.L., McDonnell, J.J., Seibert, J., Kendall, C., 2004. Scale effects on headwater
catchment runoff timing, flow sources, and groundwater-streamflow relations. Water Resources

Meng, Y., Liu, G., Li, M., 2015. Tracing the Sources and Processes of Groundwater in an Alpine
Glacierized Region in Southwest China: Evidence from Environmental Isotopes. Water 7,
2673–2690. doi:10.3390/w7062673

patterns in a small Dartmoor catchment, Southwest England. Hydrological Processes 17, 251–
264. doi:10.1002/hyp.1122

Mueller M. H., Alaoui A., Alewell C.. Water and solute dynamics during rainfall events in
headwater catchments in the Central Swiss Alps under the influence of green alder shrubs and
wetland soils. Ecohydrology, in press. doi: 10.1002/eco.1692

Hydrological response of an afforested catchment in a Mediterranean humid mountain area: a
comparative study with a natural forest. Hydrological Processes, in press.

doi:10.1002/hyp.10820

watershed dominated by glacier and snowmelt. Hydrology and Earth System Sciences 17,
1035–1050. doi:10.5194/hess-17-1035-2013

Onda, Y., Komatsu, Y., Tsujimura, M., Fujihara, J., 2001. The role of subsurface runoff through
doi:10.1002/hyp.234

Tables

Table I. Basic properties of the study catchments.

<table>
<thead>
<tr>
<th></th>
<th>ChA</th>
<th>ChB</th>
<th>BCC</th>
<th>RVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (km²)</td>
<td>0.10</td>
<td>0.10</td>
<td>0.14</td>
<td>1.9</td>
</tr>
<tr>
<td>Elevation range (m a.s.l.)</td>
<td>2657-3131</td>
<td>2647-3152</td>
<td>1932-2515</td>
<td>1844-3152</td>
</tr>
<tr>
<td>Mean elevation (m a.s.l.)</td>
<td>2907</td>
<td>2930</td>
<td>2121</td>
<td>2408</td>
</tr>
<tr>
<td>Mean slope (°)</td>
<td>36.6</td>
<td>40.9</td>
<td>31.4</td>
<td>37.4</td>
</tr>
<tr>
<td>Lithology</td>
<td>“Dolomia Principale”</td>
<td>“Dolomia Cassiana” and “San Cassiano” complex (see text)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main land cover</td>
<td>Rock</td>
<td>grassland</td>
<td>rock, grassland, sparse trees</td>
<td></td>
</tr>
<tr>
<td>Soil cover</td>
<td>< 1%</td>
<td>93%</td>
<td>51%</td>
<td></td>
</tr>
</tbody>
</table>

Table II. Criteria for the identification of rainfall, snowmelt and mixed rainfall+snowmelt events.

Antecedent rainfall refers to rainfall data recorded within 5 hours prior to the flow peak at the weather station closest to each subcatchment.

<table>
<thead>
<tr>
<th>Type of event</th>
<th>Snowmelt period</th>
<th>Antecedent rainfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td>outside</td>
<td>> 1 mm</td>
</tr>
<tr>
<td>Snowmelt</td>
<td>within</td>
<td>< 1 mm</td>
</tr>
<tr>
<td>Rainfall+snowmelt</td>
<td>within</td>
<td>> 1 mm</td>
</tr>
</tbody>
</table>
Table III. Results of the linear regression for all isotope data for the different water sources. The standard error of the parameters of the linear regression is given in parentheses. All linear regressions are significant with $p < 0.001$.

<table>
<thead>
<tr>
<th>Water Source</th>
<th>n</th>
<th>Slope</th>
<th>Intercept</th>
<th>R^2</th>
<th>Sampling period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain (LMWL)</td>
<td>61</td>
<td>8.0 (±0.1)</td>
<td>13.5 (±1.4)</td>
<td>0.983</td>
<td>May–early-November 2011–2015</td>
</tr>
<tr>
<td>Snow (summer)</td>
<td>13</td>
<td>7.0 (±0.6)</td>
<td>-9.7 (±7.7)</td>
<td>0.935</td>
<td>June–September 2011–2013</td>
</tr>
<tr>
<td>Snow (spring + winter)</td>
<td>33</td>
<td>6.7 (±0.3)</td>
<td>-12.4 (±6.0)</td>
<td>0.930</td>
<td>February–April 2012–2015</td>
</tr>
<tr>
<td>Snowmelt</td>
<td>106</td>
<td>8.3 (±0.1)</td>
<td>13.4 (±1.8)</td>
<td>0.981</td>
<td>March 2010–April 2014</td>
</tr>
<tr>
<td>Channel runoff (BCC + RVC below 2500 m a.s.l.)</td>
<td>91</td>
<td>7.4 (±0.3)</td>
<td>3.6 (±3.5)</td>
<td>0.892</td>
<td>April 2010–October 2015 (all year round)</td>
</tr>
<tr>
<td>Channel runoff (ChA + ChB + RVC above 2500 m a.s.l.)</td>
<td>25</td>
<td>8.1 (±0.2)</td>
<td>10.7 (±2.8)</td>
<td>0.984</td>
<td>Early July–mid-October 2011–2013</td>
</tr>
<tr>
<td>Springs (BCC + RVC below 2500 m a.s.l.)</td>
<td>256</td>
<td>6.8 (±0.2)</td>
<td>-4.6 (±3.1)</td>
<td>0.750</td>
<td>April 2010–October 2015 (all year round)</td>
</tr>
<tr>
<td>Springs (ChA + ChB + RVC above 2500 m a.s.l.)</td>
<td>32</td>
<td>8.3 (±0.3)</td>
<td>13.3 (±3.1)</td>
<td>0.972</td>
<td>Early July–mid-October 2011–2013</td>
</tr>
<tr>
<td>Shallow groundwater (P17)</td>
<td>33</td>
<td>7.6 (±0.4)</td>
<td>5.6 (±5.4)</td>
<td>0.907</td>
<td>May 2012–October 2015 (all year round)</td>
</tr>
<tr>
<td>Shallow groundwater (M26)</td>
<td>25</td>
<td>7.7 (±0.3)</td>
<td>7.4 (±3.1)</td>
<td>0.975</td>
<td>May 2012–November 2014 (all year round)</td>
</tr>
<tr>
<td>Soil water</td>
<td>16</td>
<td>5.3 (±0.6)</td>
<td>-18.4 (±5.9)</td>
<td>0.845</td>
<td>June–November 2012–2015</td>
</tr>
</tbody>
</table>
Fig. 1. Rio Vauz Catchment and its selected subcatchments with position of field instruments and sampling locations, and localization in Italy. The springs in the upper part of the catchment for which the two-component mixing model was applied (see Fig. 7) are labelled.
Fig. 2. Examples of rainfall-runoff events, snowmelt-runoff events and mixed-runoff events for all study catchments.
Fig. 3. Box-plot of time of rise for rainfall, snowmelt, and mixed snowmelt-rainfall events for the four study catchments. The numbers above or close to each box indicate the sample size. The boxes indicate the 25th and 75th percentile, the whiskers indicate the 10th and 90th percentile, the horizontal line within the box marks the median.
Fig. 4. Box-plot of δ²H (top panel) and EC (bottom panel) of all samples collected in this study. The numbers above or below each box indicate the sample size. In the inset of the bottom panel the box-plot of rain, winter snow, summer snow and snowmelt is reported in log-scale for clarity. The boxes indicate the 25th and 75th percentile, the whiskers indicate the 10th and 90th percentile, the horizontal line within the box marks the median.
Fig. 5. Hourly time series of precipitation (interpolated values between Arabba and Pordoi pass stations), daily average air temperature (at Pordoi pass station), $\delta^{2}H$ in rain water (top panel left) and EC in rain water (top panel right), and $\delta^{2}H$ (panels on the left) and EC (panels on the right) of channel runoff, spring water and shallow groundwater samples collected at BCC and in the lower part of RVC in the years 2011-2015. The location for channel runoff at BCC shown here is the outlet, and at RVC shown is the closest to the BCC outlet, which is the only RVC location which we have sampled regularly over the years.
Fig. 6. Mixing-plot of δ^2H vs. EC for all water sources sampled in the period June-October 2011-2013 during no-rainy conditions. Soil water, shallow groundwater, snowmelt, summer snow, winter snow and rain water are represented as averages, and error bars indicate the standard deviation. The isotopic composition and EC of rainfall are weighted for the rainfall amount. Winter snow is excluded from the mixing space because it is not a direct hydrological input.
Fig. 7. Snowmelt fraction in spring water and channel runoff sampled in the two rocky subcatchments on 5 July 2011. The error bars indicate the uncertainty.
Fig. 8. Snowmelt fraction in channel runoff and spring water sampled at BCC and the bottom part of RVC on 17 May 2012 and 11 April 2014. The error bars indicate the uncertainty.
Supplementary figures

Fig. S1. Picture of the Rio Vauz Catchment, with indication of the main geological formations. DP: “Dolomia Principale” (dolomite); TR: “Travenanzes” (formerly “Raibl”: fine graded sandstones, siltstones and claystones); DC: “Dolomia Cassiana” (dolomite); SC: “San Cassiano” (carbonate and terrigenous sandstones and claystones). A more detailed presentation and additional explanations about the main geological formations in the study area are reported in Marchi et al. (2008).
Fig. S2. Dimensionless hypsometric curves of the four study catchments.
Fig. 1. Rio Vauz Catchment and its selected subcatchments with position of field instruments and sampling locations, and localization in Italy. The springs in the upper part of the catchment for which the two-component mixing model was applied (see Fig. 7) are labelled.
Fig. 2. Examples of rainfall-runoff events, snowmelt-runoff events and mixed-runoff events for all study catchments.
Fig. 3. Box-plot of time of rise for rainfall, snowmelt, and mixed snowmelt-rainfall events for the four study catchments. The numbers above or close to each box indicate the sample size. The boxes indicate the 25th and 75th percentile, the whiskers indicate the 10th and 90th percentile, the horizontal line within the box marks the median.

197x265mm (300 x 300 DPI)
Fig. 4. Box-plot of δ^2H (top panel) and EC (bottom panel) of all samples collected in this study. The numbers above or below each box indicate the sample size. In the inset of the bottom panel the box-plot of rain, winter snow, summer snow and snowmelt is reported in log-scale for clarity. The boxes indicate the 25th and 75th percentile, the whiskers indicate the 10th and 90th percentile, the horizontal line within the box marks the median.

212x279mm (300 x 300 DPI)
Fig. 5. Hourly time series of precipitation (interpolated values between Arabba and Pordoi pass stations), daily average air temperature (at Pordoi pass station), \(\delta^{2}H \) in rain water (top panel left) and EC in rain water (top panel right), and \(\delta^{2}H \) (panels on the left) and EC (panels on the right) of channel runoff, spring water and shallow groundwater samples collected at BCC and in the lower part of RVC in the years 2011-2015. The location for channel runoff at BCC shown here is the outlet, and at RVC shown is the closest to the BCC outlet, which is the only RVC location which we have sampled regularly over the years.

474x448mm (300 x 300 DPI)
Fig. 6. Mixing-plot of δ²H vs. EC for all water sources sampled in the period June-October 2011-2013 during no-rainy conditions. Soil water, shallow groundwater, snowmelt, summer snow, winter snow and rain water are represented as averages, and error bars indicate the standard deviation. The isotopic composition and EC of rainfall are weighted for the rainfall amount. Winter snow is excluded from the mixing space because it is not a direct hydrological input.
Fig. 7. Snowmelt fraction in spring water and channel runoff sampled in the two rocky subcatchments on 5 July 2011. The error bars indicate the uncertainty.
Fig. 8. Snowmelt fraction in channel runoff and spring water sampled at BCC and the bottom part of RVC on 17 May 2012 and 11 April 2014. The error bars indicate the uncertainty.

156x206mm (300 x 300 DPI)
Fig. S1. Picture of the Rio Vauz Catchment, with indication of the main geological formations. DP: "Dolomia Principale" (dolomite); TR: "Travenanzes" (formerly "Raibl": fine graded sandstones, siltstones and claystones); DC: "Dolomia Cassiana" (dolomite); SC: "San Cassiano" (carbonate and terrigenous sandstones and claystones). A more detailed presentation and additional explanations about the main geological formations in the study area are reported in Marchi et al. (2008).
Fig. S2. Dimensionless hypsometric curves of the four study catchments.