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Abstract—Previous research stresses the importance of Head-
Related Transfer Function (HRTF) individualization approaches
for accurately locating sound sources in virtual 3D spaces.
However, in the realm of interactive experiences, methods for
assessing whether individualized HRTFs bring a benefit to the
player experience are rarely investigated. Methods to improve
spatial audio rendering are needed now than ever since Virtual
Reality (VR) is becoming a mainstream technology for interactive
experiences. This paper proposes a method of using in-game
metrics to test the hypothesis that individualized HRTFs improve
the experience of both expert and novice players in a First-
Person Shooter (FPS) game on a desktop environment. The
FPS game provides players with a localization task across three
different audio renderings using the same acoustic spaces: stereo
panning (control condition), generic binaural rendering, and
individualized binaural rendering. Collected metrics from the
game include localization error, spatial quality attributes, and
an extensive questionnaire. The individualized HRTFs for each
participant were synthesized using a hybrid structural model.
The model employs a deep learning architecture to synthesize
a pinna-related response from a pinna image, and combines it
with a measured generic head-and-torso response. The interaural
time difference (ITD) is then adjusted to match that of an HRTF
dataset subject minimizing a localization error metric. The results
show that the 22 participants performed significantly better in
the localization task with their individualized HRTF. Increased
localization accuracy with respect to the generic HRTF was
recorded both in azimuth and elevation perception, and especially
in the case of expert game players.

Index Terms—3D audio for gaming, HRTF individualization,
First-Person Shooter

I. INTRODUCTION

Gaming experiences are reaching high fidelity implementa-
tions that provide stunning audiovisual results. For the current
generation of gaming technologies, there has been a focus on
audio technologies, with Sony focusing specifically on 3D audio
for their latest home entertainment system, the Playstation 5.
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To meet this end, they introduced the Tempest 3D AudioTec
engine, which is still being expanded upon. As part of future
updates, engineers at Sony are investigating the possibility of
bringing individualized HRTFs to the system. Furthermore, the
popular game engine Unreal Engine (UE) is being updated
to its fifth version, which will include improvements in the
audio rendering such as ambisonic soundfield{’| to simulate a
3D soundscape. Therefore, consumer needs currently call for
accurate yet inexpensive methods to implement high-fidelity
3D sound in games.

Katz et al. crafted a VR experience [1] whereby HRTFs
selected by individual players were evaluated in an environment
where the player had to localize virtual sound targets around
them. Their research investigated whether the accuracy of the
player is affected by the choice of HRTF as the game becomes
more difficult to play. However, not much consideration was
placed into scalable binaural systems that could be applied
to games. Furthermore, HRTF individualization techniques
are becoming increasingly mature. For example, newer and
efficient models for retrieving personalized measurements using
deep neural networks (DNNs) have been investigated [2]]-[4]]
but are yet to be applied to gaming experiences. This paper
proposes the application of an individualized HRTF model to a
gaming experience in the form of a First-Person Shooter (FPS)
video-game to investigate the hypothesis that individualized
HRTFs can improve both user performance and the quality of
their experience compared with generic HRTFs.

The paper is organized as follows: Section explores
relevant literature on binaural rendering for video games and
on HRTF rendering and assessment. Section [[II] introduces
our HRTF individualization model, while sections [[V] and
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showcase the design of the FPS game as well as the experiment
to test the hypothesis that this paper sets forth. Finally the
results are gathered, discussed and concluded in the last

sections and [VIII] respectively.

II. RELATED WORK

A. Understanding the importance of spatial audio in games

Spatial audio in games not only provides a more immersive
experience for players, it also helps them navigating the in-
game environments [[5]. Within a 3D environment, a mix of
visual and auditory cues proves to be most effective, with the
latter giving the player a reference to the visual stimuli thereby
confirming their observations.

Additionally, spatial audio in games can be employed in
the sonification of in-game processes, whereby information
stored within the game can be visually disconnected by instead
presenting it through a series of explicit sounds that influence
the player’s choices. For instance, a game could inform players
through sounds that they are low on health, so that when they
hear something dangerous approaching them from the distance,
they are prompted to play defensively [6].

When implementing interactive experiences such as video
games, virtual reality, or augmented reality (AR), different
models for spatial audio can be used, depending on the
experience being conveyed as well as the available hardware
specifications. The simplest form of spatial sound consists
in attenuation-based curves which alter both the sound level
and the left/right channel balance depending on the player’s
position relative to the audio source. The attenuation-based
curve can be further enhanced by applying an HRTF, which
enhances both horizontal and vertical auditory localization.
Physics-based approximations of the virtual space within the
virtual environment can also be realized with the support of
techniques such as ray tracing or beam tracing [7].

In video games, sound localization cues have found
widespread adoption. Competitive shooter games rely heavily
on sound cues as a means for the player to locate enemies or
objectives. Games such as Counter-Strike: Global Offensive
and Half Life: Alyx, both developed by Valve, employ the
Steam Audio API to both model sound propagation and
perform binaural rendering. In 2017, as part of an update
of Counter-Strike, a highly competitive shooter game, Valve
introduced a generic HRTF that players can manually enable.
Although initially met with skepticism, it has been eventually
embraced by the players’ community, thanks to its continuous
improvement leading to a better experience for the users [6].
Conversely, Half Life: Alyx is a single-player experience played
within a VR environment. In this case, the sound is instrumental
for immersing the player into the in-game world, where head
tracking technology allows for the interaction with agents such
as non-playable characters outside of the player’s field of vision.

The rather complicated process of measuring individual
HRTFs prompted modern games with binaural audio imple-
mentation to exclusively rely on generic HRTF sets. Thus, the
question remains on whether localization performances can be

further improved by employing a customized HRTF based on
the player’s individual anthropometry.

B. Generic, individual, and individualized HRTF rendering

HRTFs derived from generic subjects such as dummy
heads often result in localization errors and inaccurate spatial
perception [8]]. In fact, while generic HRTFs and other audio
rendering techniques can approximate the interaural cues
involved in horizontal localization, the monaural cues needed
to discern vertical direction are highly dependent on the
anthropometric characteristics of the individual ear [9].

In a work by Mgller et al. [8]], test participants were exposed
to individual and generic HRTF-filtered stimuli. From their data,
an increased number of error in the generic HRTF condition
was recorded for both nearby and distant sound sources in
the median plane, suggesting that an individualized binaural
profile can improve sound localization performances. Similarly,
Wenzel et al. [[10] found an increase in front-back confusion
and overall degraded elevation perception when using generic
HRTFs, though they argue that their test participants maintained
a solid grasp of directional information with generic HRTFs.

While individual HRTFs obtained through acoustic mea-
surements provide the most accurate localization experience
possible, they can prove quite impractical due to the need for
dedicated facilities, tools, and the overall invasiveness of the
procedure. Over the past decades, several HRTF individual-
ization techniques have been devised in order to avoid the
burden of conducting strenuous acoustical measurements with
human subjects. These techniques consist in selecting, adapting,
or synthesizing an HRTF set that best suits a given listener,
on the basis of their anthropometry or perceptual feedback;
an extensive review of HRTF individualization methods is
provided by Guezenoc and Seguier [[11].

C. Assessing spatial audio

While generic and individual HRTFs show interesting results
in comparison, considerations should also be made into how the
quality of the synthesized sounds is perceived when comparing
different HRTF renderings. Nicol et al. [12] argue that the
multitude of approaches to simulate real-life audio listening
within virtual environments using spatial audio calls for a more
in-depth look on how to assess the difference in the models,
especially for binaural audio that has quite subjective results
depending on the used HRTF set.

Oftentimes, HRTFs are solely evaluated on the basis of
localization accuracy, thereby neglecting other properties such
as timbre. The latter could be evaluated with the Basic Audio
Quality (BAQ) model, where a degradation in the given
signal can be measured with respect to a predefined reference.
However, BAQ was developed to evaluate audio codecs rather
than assessing HRTFs. Additionally, the traditional BAQ
metrics do not account for errors or inaccuracies introduced
by the binaural content, such as small errors in measuring
individual HRTFs. There is no steadfast theoretical proof either,
that an individual HRTF will provide the best possible audio
experience for the user. What is required, instead, is a means
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Fig. 1. HRTF individualization system. Figure reproduced from [13]].

to evaluate binaural rendering systems that does not measure
localization accuracy alone.

Nicol et al. propose a Quality of Experience (QoE) metric
to measure the user’s subjective stimuli and experiences within
the system. In a gameplay scenario, the QoE could be measured
by the actions committed by the player in different acoustic
spaces. The user would for example expect a very reflective
acoustic space, if they are making a lot of noise in an open hall.
Other subjective data on the perceived quality of spatial sound
reproduction may comprise attributes that can be ranked. One
frequently used attribute is whether the sound reproduction
is experienced naturally or artificially among listeners [[14].
Further anchors that describe the attributes of spatial sound
quality may include brightness, richness, externalization and
preference [15].

III. HRTF INDIVIDUALIZATION

The technique employed to individualize the HRTFs eval-
uated herein is based on a recently proposed structural
HRTF model [[13]]. The model combines deep learning (DL)
and conventional DSP sub-systems, and features synthesized,
selected, and measured components. Figure [I] provides an
overview of these elements. The sub-system synthesizes pinna
responses (PRTFs) from an image of the pinna or analogous 2D
features, such as pinna edges. The DSP sub-system implements
a structural model whereby an HRTF set comprising only
of shoulder and head reflection effects is filtered using the
aforementioned PRTF and processed to match the interaural
time difference (ITD) of a subject from an HRTF database.

The system has been implemented in Python and MATLAB,
and is capable of generating an individualized HRTF set in
a format compatible with most modern binaural rendering
enginesﬂ Compared with existing structural modeling solutions,
our model features a measured component and a PRTF
synthesis technique based on DL. This latter component relies
on the assumption that, using a 2-dimensional representation
of the pinna, it is possible to derive features that correlate with
the spectral characteristics of the PRTF. The solution has the
advantage of being relatively easy to run while requiring a
small amount of data from the user. The following subsections
elaborate on the model.

3www.sofaconventions.org

A. PRTF synthesis

The DL sub-system comprises three building blocks: a
variational autoencoder (VAE) used for deriving a compact
representation, called z,, from 2D features such as pinna
contours; a conditional variational autoencoder (CVAE) used
for synthesizing a pinna response from its compact represen-
tation, called znys; a deep neural network (DNN) mapping
the compressed representation ze, into zyys. These models
are trained separately using their respective datasets and
subsequently combined into a prediction script, capable of
generating an individualized PRTF. The prediction script can
be used independently from the training code base and only
requires the pre-trained model weights to work. The following
subsections cover the theoretical background as well as the
training process for each of the models.

1) Pinna images autoencoder: This model derives a com-
pressed encoding, known as latent representation, which can be
later used as predictor for synthesizing HRTFs. We employed
a variant of autoencoders called variational autoencoders
(VAE). VAEs are probabilistic models mapping an input sample
to a probability distribution and are trained to minimize a
reconstruction metric as well as enforce an isotropic Gaussian
distribution of the latent space. We trained the model on
three distinct datasets, consisting of grayscale images, depth
maps, and contours of the pinnae. The first two datasets were
programmatically rendered from the 3D head meshes of 55
HUTUBS [16] subjects; the contours were extracted from the
depth map dataset using a Canny edge detection algorithm. In
order to augment the datasets, we introduced slight variations
in the virtual camera angle and applied different types of noise.

2) Encoding of HRTFs: This second model is tasked with
autoencoding HRTF magnitude responses with the purpose of
reconstructing them from their compressed representation or
generating new ones from arbitrary points in the latent space.
Since HRTFs depend on both the anthropometry of the user and
the elevation and azimuth angles under consideration, we use
a variant of VAE called conditional variational autoencoder
(CVAE), where the output data can be conditioned by a given
spatial coordinate [17]. The training data consisted of pairs
of HRTF logarithmic magnitude responses — derived from
the impulse responses found in the SOFA files — and data
labels. We trained the model on two variations of the HUTUBS
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dataset: one containing HRTFs across the entire spatial grid,
and one based on median-plane data only.

3) Prediction of encoded representations: The last model
performs a simple supervised learning task, predicting the
encoded representation of the HRTFs from the encoded
representation of the 2D pinna features. This is believed to be
possible because, in order to faithfully reconstruct its input,
the pinna image VAE must encode information pertaining
to the individual morphology of the pinnae within its latent
dimensions, which can be used as predictors of the HRTF
response. To train this network, we extracted latent vectors
corresponding to each available HRTF and pinna image using
the encoders of the previous two models, and fed them into the
models along with the spatial coordinate of the target HRTFE.

We tested several training strategies, such as different
combinations of input features, spatial coordinates expressed
with an interaural-polar system, and principal components of
the encoder representation of the HRTF. The best-performing
strategy was selected by evaluating the reconstruction per-
formances, in terms of spectral distortion, on four unseen
HUTUBS subject.

B. HRTF set generation

This part of the model consists in generating an entire
HRTF set based on the previously synthesized PRTFs. Since
the predictors used in the DL sub-system only relate to the
pinnae, spectral features and binaural cues that are not caused
by external factors have been identified and accounted for
separately in the model.

To approximate the effect of head, torso, and shoulders,
we use an artificial pinna-less subject from the VIKING
dataset [18]]. The subject consists of a KEMAR mannequin with
its original pinnae removed and the slots filled with a silicone
baffle. The resulting spectral features provide subtle localization
cues at frequencies below 3kHz and are therefore useful for
localizing narrow-band sounds under that threshold [19]. The
pinnae contribution is then applied to the pinna-less data in
the time domain, using a minimum-phase IIR filter derived
with the Yule-Walker method and matching the magnitude
response of the PRTFs. The peaks and notches caused by the
pinnae are known to exhibit little deviation across the horizontal
direction [20], so only the median-plane PRTFs were used.

Finally, to improve localization across the horizontal di-
rection, the ITD of the generated HRTFs is manipulated to
match that of a best-fit HUTUBS subject using a selection
algorithm [21]]. In this case, a horizontal localization error
metric is predicted on the basis of three anthropometric param-
eters corresponding to head width, head depth, and shoulder
circumference. The metric is computed for all HUTUBS
subjects, and the one minimizing the error is selected. We
then extract the onset delays of the selected subject’s HRIRs,
interpolate them so as to match the spatial grid employed by
the VIKING dataset, and apply them to the generated HRTFs.

For a more comprehensive explanation of the individual-
ization method, as well as a discussion of its performances

Fig. 2. The two clusters of targets in the City space.

as derived objectively using spectral distortion metrics and a
sagittal-plane localization model, please see [13].

IV. THE 3D SHOOTER GAME

Inspiration for the game was taken from the work previously
mentioned in The concept of a first-person
shooter (FPS) game easily lends itself to assessing binaural
localization due to the semantic nature of locating the enemy
target and shooting it, which simplifies the localization task to a
level of abstraction that everyone can understand. Furthermore,
the first-person perspective is optimal for spatial audio, as the
camera references the player’s head movements. Therefore, a
faithful acoustic environment is crucial for providing the player
with an immersive gaming experience.

One of the main design criteria was ensuring a fun and
simple experience. The player would navigate the environment
from within a rail cart, following a predetermined path, where
they can use the mouse or potentially a head-mounted display
(HMD) to look around.

Three distinct acoustic spaces were designed. Within each of
them, several clusters of shooting targets, anchored to different
elements of the scenery, are displayed in sequence. One target
is randomly selected from each cluster to play a looping
Gaussian white noise burst with no reverberation applied. Both
the acoustic spaces and clusters of shooting targets can be seen
in Figures and

Through auditory selection, the player is required to aim and
shoot at the target they think is playing the sound, within a thirty
seconds time limit. Visual feedback is provided depending on



Fig. 3. The two clusters of targets in the Castle space.

Fig. 4. The two clusters of targets in the Dungeon space.

whether they hit the correct target, a wrong target, or if time
expired. Furthermore, a numerical score based on the number
of correct targets hit is shown to the player, to entice motivation
to complete the task successfully. In-game screenshots of the

Fig. 5. In-game screenshot of the sound localization trial. Here the user has
shot a target (marked by a yellow color).

Fig. 6. The result of the shooting trial is shown. Green color plus the UI
marker means that the target was correctly chosen. Red color means that the
target did not correspond to the spatialized sound.

shooting trial can be seen in Figures [5] and [6]

In addition, the acoustic spaces are populated with different
environmental diegetic sounds [22] such as background city
ambience, a bustling cafe, and a stationary car playing the radio
at full volume. All of these sounds are rendered binaurally when
the player moves across the environment in the cart. Depending
on the current acoustic space, the amount of environmental
reverberation is manipulated in order to match the visual scene.
In the first acoustic space, consisting of a urban environment, an
open reverberation profile is used — i.e. the sound is attenuated
through air and bounces off cluttered surfaces. The second
space, a castle, employs an open hall reverberation profile
giving a higher amount of reflected sound. The third space, a
dungeon, features a reverberation profile with substantial echo.
In order to implement the changes in each acoustic space, a
default parametric reverb filter provided by the Unity audio
engine was applied. Parameters such as sound level, reflection
delay, and room effect for both high and low frequencies were
tuned to approximately simulate the acoustic spaces.

During the game design process, the Agile Software Devel-
opment [23]] strategy was employed to test various ideas and
game mechanics. This was done by allowing five participants
to test the game at different iterative steps focusing on different



core dynamics. At each step, a new sample of participants were
recruited and their feedback collected through an open online
questionnaire focused on extracting qualitative information.
The feedback from the participants would then be used to
inform the design for the next iterative step. The questionnaire
was inspired by the conventions established by Fullerton on
play-testing a game [24].

We conducted tests for two iterations of the game. In the
first iterative test it was clear that the player lacked control
and excitement. Moreover, the test participants expressed
their concerns regarding the placements of the targets, which
appeared too disconnected from the rest of the environment.
Additionally, the players felt that the cart that moving too
slowly, and expressed a desire to control the speed themselves.

For the second iterative test, the feedback was much more
positive and suggested on adding more visual improvements,
such as a score system and improving the visual feedback of
the localization targets. Some participants expressed confusion
over the color coding of the targets shot. Thus, a neutral yellow
color was applied to the chosen target upon shooting, with
the correct and wrong targets subsequently changing color to
green and red, respectively. The player could also control the
acceleration of the cart now, to play the game at a tempo
to their liking. However, when approaching a target, the cart
would slow to a default acceleration in order to make sure
each player has the same experience during the target trial.

The game was developed using Unity 2019.4.1f1 bundled
with the Steam Audio API which supports custom HRTF data
in SOFA format. Additionally, royalty-free third-party elements
were used to assist with building the environments, such as
3D assets and sound samples.

V. EXPERIMENTAL PROTOCOL

The experiment consists in completing multiple sound
localization tasks construed as locating and hitting a sound-
emitting target, distributed across the three acoustic spaces
within the game described in the previous section. For each
participant, three iterations — called stages hereafter — are
performed, each featuring a different audio rendering condition.

The following subsections elaborate on the collection of
participants as well as the procedure implemented within the
game and followed throughout the experiment.

A. Farticipants

A total of 26 people signed up for the experiment, although
4 did not manage to complete it within the agreed time frame.
Thus, the final sample size consisted of 22 participants, made
up of 72.7% males, 22.7 % females, and one participant who
preferred not to specify. The age of the participants ranged
from 22 to 30. None of them reported any hearing problem.
Participants were also asked to rate how often they played video
games. The distribution of participants not playing games often
(casual players) and participants reporting to play games often
(experienced players) turned out to be even, allowing a balanced
comparison between the two clusters.

The participants were sampled using convenience sam-
pling [25] whereby if they were interested in joining the
experiment, they would receive a consent form as well as
a guide on how to submit the anthropometric data needed to
synthesize their individualized HRTF. Because of the COVID-
19 pandemic and the related restrictions, participants were asked
to run the experiment from home using their own devices.

Once the data for a given participant was gathered and their
HRTF successfully synthesized and validated, they would be
sent a personalized build of the game containing a generic
HRTF (from the MIT KEMAR dataset [26]]) and their individ-
ualized one. Since prior research [[1]] suggests that the order
in which HRTFs are presented can affect localization tasks,
it was also elected to divide the participants into two groups:
the first group would experience the generic HRTF followed
by the individualized one, whereas the second group would
experience them in the opposite order.

B. Procedure

At the beginning of the experiment, the player is welcomed
by a 2D scene featuring a song being played. The player
is asked to wear their best available headphones, adjust the
volume to a comfortable level, and confirm that the left and right
channels of the headphones are placed correctly. Subsequently,
the player is introduced to an initial tutorial stage, where
a set of instructions is provided through a head-up display
(HUD). These include the in-game controls for rotating the
view, shooting, and changing the speed of the cart. The player
is also explained the objective of the game, and is given the
chance to shoot a sound-emitting dummy target. This stage
uses a non-binaural profile (stereo panning).

Once the simple task of the tutorial stage is completed, the
player is presented with the first stage of the game. The spatial
audio model used here is a simple stereo panning profile and
the task consists in shooting targets across the three spaces —
City, Castle, and Dungeon. For each target hit by the player, the
game stores three vectors, corresponding to the current position
of the player, the position of the target hit by the player, and
the position of the sound-emitting target. This data is used to
calculate the vertical and horizontal error metrics presented
in Section The time elapsed from target presentation to
shooting is also stored.

After the non-binaural stage, the audio engine is instructed to
use the first of the two HRTF sets — generic or individualized,
depending on the experimental group. The player is then
spawned back at the beginning of the path and the second
stage begins, with the same visual and environmental auditory
layout as the first stage. Once this stage is completed too, the
remaining HRTF set is loaded and the player enters the third
and last stage. Performance data is collected exactly as in the
first stage.

At the end of each stage, the player is presented with an
in-game questionnaire asking them to rate the difficulty of
localizing the targets, and to describe their audio experience
using a number of attributes based on MUSHRA evaluation [27]]
as well as anchors inspired by previous research assessing



spatial audio quality [15], [28]]. The attributes that players are
required to rate on 7-point Likert scales are the following:

1) Instruction: Please rate the characteristics of the target
(hissing) sounds you had to shoot throughout the level.

o Inside my head / Outside my head
« Difficult to localize / Easy to localize

2) Instruction: Please rate the characteristics of all the other
sounds throughout the level.

o Dark / Bright

o Incoherent / Coherent

o Synthetic / Natural

o Low quality / High quality

After completing the last stage, the player is redirected to a

Google Forms questionnaire inquiring about the overall experi-
ence. During this final questionnaire, background information
such as age, experience with video games, and used headphone
model were gathered, along with feedback on the overall
experience and their self-reported favourite sound profile. To
conclude the experiment, participants were asked to submit the
JSON file that was generated by the application, containing all
the performance data and the in-game questionnaires.

VI. RESULTS

Once the data was gathered, it was possible to derive a
measure of error for both azimuth and elevation localization.
This was done by first calculating the orientation of the correct
and hit targets relative to the player position by subtracting the
player vector vjayer from both the correct target vector Vi
and the hit target vector vyi. We then proceeded to convert
each vector v = (v, vy, v,) into the azimuth and elevation
angles 6 and ¢:

0 = atan2(v,, v,,)
¢ = atan2(\/vy2 + v.2,vy)

Subsequently, the horizontal and vertical errors measures were
computed as:

(D

eerr = |9hit - 91rue|
¢err = |¢hit - ¢true|

The horizontal error was then wrapped in the range [0°, 180°]:

360° — Oerr,
eerr = {Gen, ¢

2

if O > 180°
otherwise

3)

Finally, the impact of front-back reversal was neutralized by
applying this last transformation to the horizontal error:
180° — Oer,  if Berr > 90°
Oerr =

otherwise

“)

9611’7
On top of these error metrics, we computed the time taken to
hit each target, a well as the number of correct targets hit by
each participant.
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Fig. 7. Summary of all the localization metrics.

Figure [7] summarizes the results of each audio rendering
method in terms of the aforementioned metrics. The most no-
ticeable trend shown by the data is a progressive improvement
in localization errors and hits count when going from non-
binaural rendering, to generic HRTFs, and to individualized
ones. The horizontal localization error is more than halved,
going from 7.9° in the non-binaural case to 3.2° in the
individualized HRTF case, while the vertical localization
error gains 2° and the number of correct targets increases
by 2 on average. Indeed, according to all the considered
localization metrics, the non-binaural rendering offers the
worst performances, the individualized HRTFs offer the best
performances, and the generic HRTFs lie in the middle of
the range. The average amount of time taken for each target
stays approximately constant at around 9 seconds. Furthermore,
along with an increase in performance, it is possible to notice
a contraction in the standard deviation of the data, potentially
indicating a consolidation of the performances.

TABLE I
P-VALUES OF PAIRED SAMPLE T-TESTS FOR EACH METRIC AND
COMBINATION OF RENDERING STRATEGIES

Horizontal err.  Vertical err.  Hits count
Non-binaural, Generic 0.015 0.081 0.054
Generic, Individualized 0.025 0.091 0.024
Non-binaural, Individualized 0.002 0.004 0.000

In order to determine the statistical significance of the
results described above, we performed a dependent t-test for
paired samples, comparing the distribution of the data for each
combination of rendering techniques. The p-values are shown
in Table [ Numbers in bold highlight the cases where the null
hypothesis, indicating that two related samples have identical
average, can be confidently rejected. Predictably, the null
hypothesis is consistently rejected whenever larger differences
are present, such as in the case of the horizontal localization
error. However, when considering the vertical localization, only
the difference between non-binaural and individualized audio
rendering appears to be statistically significant.
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Fig. 8. Horizontal and vertical localization errors for expert (solid pattern)
and casual (hatched pattern) players

We then considered the difference in performances between
self-reported expert and casual video-games players amongst
the participants, corresponding to groups of 10 and 12 subjects,
respectively. On average, expert players performed better than
their peers across almost every rendering strategy, reporting
an horizontal localization error of 2.4°, a vertical localization
error of 3.1°, and a hit rate of 72% for the individualized
HRTF case on average. A comparison of the performances can
be found in Figure [§]

Interestingly, expert players experience the greatest perfor-
mance improvement in horizontal localization when going from
non-binaural to generic HRTF rendering, while casual players
appear to benefit more from individualized HRTFs. Conversely,
when considering vertical localization error, a separate t-test
between generic and individualized HRTFs infers a statistically
significant difference in performances (p = 0.036) for expert
players only.

Finally, we considered the results of the in-game question-
naire investigating the user’s experience. These are summarized
in Figure 9] where the mean rating for each question is
shown, divided by rendering strategy, along with the standard
deviation. Surprisingly, the non-binaural rendering strategy
scored highest in terms of externalization, closely followed
by the individualized HRTF. More predictable instead are the
ratings for ease of localization which, similarly to the metrics
presented earlier, progressively increase between non-binaural,
generic, and individualized HRTF rendering.

With regards to the perceptual attributes of the auditory scene,
the generic HRTF scored highest in brightness, naturalness,
and quality, while the non-binaural rendering scored highest
in coherence. The individualized HRTF appears to be notably
worse in terms of coherence and naturalness. Nevertheless,
except for ease of localization, all of the observed differences
are quite small, amounting to half a point at best.

Level

I Non-binaural
3 Generic
B Individualized

Externalisation

Localize

Brightness

Coherence

Naturalness

Quality

Mean rating

Fig. 9. Summary of responses of the in-game questionnaire.

VII. DISCUSSION

A. Assessing the localization task

From the results gathered in the previous section, it appears
obvious that the non-binaural instance had the worst results in
terms of localization metrics. However, it would also be unfair
to regard the results from the non-binaural instance to be of
any significance in comparison, since it is the first instance
that all the participants were introduced to. Accidents can
easily occur as the participant is learning the mechanics of the
game as well as the instructions of localization task. Instead,
what can be derived from the non-binaural instance is the ease
of understanding the dynamics of the game, which is crucial
to the game design as well. In other terms, this preliminary
instance proved effective in letting the players familiarize with
the game.

From the analysis performed, we can see that generic
and individualized HRTFs differ in horizontal localization
performance as well as in the number of targets hit, with
the individualized HRTF proving more accurate. This appears
promising, although comparisons of individualized and generic
HRTFs should be further tested within gaming experiences. On
top of the vertical and horizontal error, additional localization
metrics might be needed in order to highlight further significant
differences.

It is important to bear in mind who would actually benefit
from individualized HRTFs. Here we found that dividing test
participants into casual and expert groups yields interesting



differences in results. When considering horizontal localization,
our expert participants experience the highest improvement in
performances when going from non-binaural rendering to a
generic HRTF. This indicates that generic HRTFs could suffice
the needs of expert players [29]. Conversely, casual players
receive a similar performance gain when going from generic to
individualized HRTF, suggesting that an accurate representation
of individual azimuth cues could be paramount to ensure an
immersive experience for casual users.

When considering vertical localization, the data portray a
different picture. In this case, a similarly modest performance
improvement is observed when going from non-binaural
rendering to generic HRTFs, and from generic to individualized
HRTFs, for both expert and casual players. However, this effect
is only statistically significant for the expert group, suggesting
that expert players may experience a more meaningful —
though limited in magnitude — performance improvement
when employing an individualized HRTF.

B. Assessing the experience

For the in-game questionnaire, it is hard to highlight any
particular difference, except the non-binaural instance scoring
particularly low in ease of localization. The non-binaural
instance also ranks higher on the sound being externalized;
however, this could be due to being the first instance that
the user is subject to. If this was their first experience with
a video-game offering 3D audio or if they had not paid
attention to it before, presenting the non-binaural rendering
as the first instance would put it at an advantage. Regarding
ease of localization, we can see that the individualized HRTF
scored highest, which supports the results from the performance
metrics.

Concerning the other attributes, a number of test participants
noted that some of the anchors seemed very vague to them, and
that they were not used to the corresponding terminology. The
MUSHRA anchors are also designed for more expert listeners,
which could indicate that in this case they failed to properly
make the users aware of what they were rating.

In the online questionnaire, 11 participants picked the
generic HRTF as their preferred instance, with 9 picking their
individualized HRTF. The remaining 2 picked the non-binaural
instance. Some participants managed to describe how one type
of HRTF was able to help them discern vertical angles. For
instance, participant #7 reported: “I picked Level 3 (i.e., generic
HRTF) as I found it the easiest for localizing the target hissing
sounds. But the soundscape also felt more empty (sic) in this
level than in the other two”. Instead, participant #9 stressed
noticeable improvements with localizing vertical targets using
the individualized HRTF: “I think that was the closest where
I was able to discern between sounds that are up or down.
That was my biggest struggle”. Importantly, the majority of
the users found the game fun to play and easy to access.

C. Validity of the experiment

Although 22 users successfully completed the experiment,
having the test done remotely could have introduced several

issues. Most notably, each test participant used a different set
of headphones, and therefore headphone compensation was
not possible. In a worst case scenario, some of the headphones
responses may not have accurately reflected the frequency
content of the HRTFs [30].

Another issue with conducting the experiment remotely was
that it was not possible to ensure the reliability of the game
application on all platforms. In one case, the JSON database
was not saved properly on an older version of OSX, causing
one participant to be excluded from the experiment due to
invalid data. Overall, the Windows builds worked more reliably
due to it being the main platform the game was developed
for. Nevertheless, in terms of game stability, users reported no
crashing or any severe bug that hindered the experiment.

For the reasons above, it is believed that more accurate and
reliable data can be acquired by performing the experiment
physically at a lab using the same hardware and peripherals
for all participants. This would also allow the experimenter to
ensure that the collected anthropometric data is accurate.

VIII. CONCLUSIONS

In this paper, we investigated the effectiveness of individu-
alized HRTFs generated using a recently introduced technique
when used within an FPS game environment. As part of the ex-
periment, a game was developed, where players were instructed
to shoot a sound-emitting target. Throughout the game, multiple
audio rendering schemes were applied, including a generic
HRTF set and a non-binaural audio rendering method. Using
the data collected throughout the experiment, we extracted
localization error metrics based on horizontal and vertical
errors, as well as quality-of-experience ratings for a number
of relevant perceptual attributes.

Our results suggest that participants performed best with
their individualized HRTF compared to a generic HRTF
in terms of localization performance. When compared with
generic HRTFs, the individualized ones resulted in increased
localization accuracy on both the horizontal and vertical axes,
with particular emphasis on the latter in the case of expert
game players. Interestingly, we observed that the participants’
opinion on their preferred HRTFs in terms of experience differs
to the HRTF that prompted the best localization performance.

Nevertheless, further improvements can be made. Since
some of the participants found the spatial attributes in the
questionnaire vague, better communication regarding the spatial
attributes should be considered, e.g. through a more thorough
explanation, or by providing an example. This could include
in-game sound references on what each attribute refers to or
better descriptors.

Finally, it would be interesting to repeat the experiments
with a more focused target of competitive players, where sound
localization is integral to the gameplay. Such group may more
aptly highlight the personal benefits of an individualized HRTF
set in their gameplay experience.
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