Shading systems, if efficiently operated, can improve the internal environmental quality, namely both thermal and visual comfort, and reduce the energy consumption due to cooling needs. Roller shades represent one of the most commonly used types of shading systems, in particular in the tertiary sector. Not only they can be easily installed and maintained, but also they often represent the only design choice when existing buildings are considered. Although roller shades are characterized by a beam-beam and by a beam-diffuse transmittance, both changing according to the incidence angle, as the transmitted solar radiation decreases with the increase of it, they are typically modelled assuming equal reflectance and emissivity for both sides and perfect diffuser behavior, with transmittance and reflectance independent from the solar radiation incidence angle. Neglecting the daily variability of these properties can lead to underestimate their impact on the occupants comfort conditions. In this paper, different models for representing the roller shades behavior, embedded in two widely diffuse simulation codes have been compared with a set of measured data, recorded at the Bowen laboratories of the Purdue University (Indiana USA), combining thermal (Energy Plus) and lighting simulation (Energy Plus or DIVA for Rhino). The thermal properties of the building materials and the internal gains have been calibrated for the thermal simulation, in order to evaluate better the models capability of predicting the roller shades behavior. Then, starting from the simplest daylighting model, which assumes the roller shades as perfect diffusers, more complex characterizations have been considered and validated through the comparison with the measured data.

On The Representation of the thermal and visual behavior of a roller shade material: comparison between different simulation models

CAPPELLETTI, FRANCESCA;
2016-01-01

Abstract

Shading systems, if efficiently operated, can improve the internal environmental quality, namely both thermal and visual comfort, and reduce the energy consumption due to cooling needs. Roller shades represent one of the most commonly used types of shading systems, in particular in the tertiary sector. Not only they can be easily installed and maintained, but also they often represent the only design choice when existing buildings are considered. Although roller shades are characterized by a beam-beam and by a beam-diffuse transmittance, both changing according to the incidence angle, as the transmitted solar radiation decreases with the increase of it, they are typically modelled assuming equal reflectance and emissivity for both sides and perfect diffuser behavior, with transmittance and reflectance independent from the solar radiation incidence angle. Neglecting the daily variability of these properties can lead to underestimate their impact on the occupants comfort conditions. In this paper, different models for representing the roller shades behavior, embedded in two widely diffuse simulation codes have been compared with a set of measured data, recorded at the Bowen laboratories of the Purdue University (Indiana USA), combining thermal (Energy Plus) and lighting simulation (Energy Plus or DIVA for Rhino). The thermal properties of the building materials and the internal gains have been calibrated for the thermal simulation, in order to evaluate better the models capability of predicting the roller shades behavior. Then, starting from the simplest daylighting model, which assumes the roller shades as perfect diffusers, more complex characterizations have been considered and validated through the comparison with the measured data.
File in questo prodotto:
File Dimensione Formato  
p3687_published.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: DRM non definito
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/267398
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact