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Abstract

Solar photovoltaic (PV) has established itself as a fairly promising, fast-growing renewable energy source. The main
eterminants of solar PV deployment are thought to be physical and climatic factors – such as latitude and solar irradiance,
ot to mention terrain and built environment features – as well as socio-economic drivers — such as population density,
ousehold size, and education level. Besides, peer effects and neighborhood effects are found to affect the willingness to
dopt solar photovoltaic systems strongly. This study aims to set up robust space–time models, which enable us to investigate
he drivers of solar PV deployment using fine-grained spatial and temporal data. We use space–time auto-regressive models
STAR) with several exogenous covariates that are expected to explain the installed solar PV capacity. STAR models require
he specification of spatial weight matrices (W). As in regular lattice data, we select causal (lower triangular) W matrices so
hat the consistency of least-squares (LS) estimators is warranted. We show that they can be extended to robust LS estimators,
hich are necessary because of strong outlier contamination. Models are tested on the Italian municipal data of residential

nd industrial PV plants installed under the support schemes in force between 2006 and 2011. Empirical results confirm the
mportant role played by the space–time dynamic components. Significant exogenous predictors are found in the domains
f the physical features (elevation and land area), demography (population), built environment (residential buildings), and
ocio-economic aspects (income, employment rate, commuter workers).
c 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

eer-review under responsibility of the scientific committee of the Tmrees, EURACA, 2021.
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1. Introduction

1.1. Solar photovoltaic energy in the framework of the European Green Deal

Between late 2019 and early 2020, the European Commission has put forward the European Green Deal (from
ow on, EGD), a new action plan meant to protect the health and safeguard the well-being of citizens [33] by
nhancing the sustainability of the Union’s economic system [29]. The EGD has been conceived in a landscape
ominated by massive concerns for the effects exerted by human activities on the climate and the environment
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Nomenclature

Elv Elevation (m.)
Csr Commuter students (pct. of commuter students in the population)
Cwr Commuter workers (pct. of commuter workers in the population)
Emr Employment rate (ratio between employed people and the total population)
Flu Firms’ local units (unit-to-population ratio)
Her Higher-education rate (pct. of graduates in the population)
i, j indexes of time and space lags
Inc Disposable income per capita (Euros)
l, m Index and number of exogenous regressors
Lat Latitude (deg.)
n, T Number of spatial units and number of time periods
N Number of observations (sample size)
Pop Population (inhab.)
R06 Share of residential buildings built after 2006 (pct.)
R81 Share of residential buildings built after 1981 (pct.)
Rbd Residential buildings (building-to-population ratio)
s, t Space and time indexes
Ser Secondary-education rate (pct. of people with a secondary school diploma)
Lan Land area (km2)
Unr Unemployment rate (ratio between unemployed people and the total labor force)
W Spatial weights matrix
X Matrix of exogenous regressors
y Dependent variable
yoa Installed photovoltaic capacity (kW), overall
ynorm Installed photovoltaic capacity (kW), normalized by population

[18,28,73]. The ambitious long-term goals of the EGD are as follows: to cut down to zero the net emissions of
greenhouse gases by 2050 – namely, climate neutrality – and to decouple the economic growth from resource use
[29]. The EGD is built upon several pillars, which involve changes in the energy, manufacturing, building, and
transportation industries. For instance, industrial sectors are required to mobilize towards a climate-neutral and
circular economy, while the construction sector is asked to double – at least – the renovation rate of the building
stock [60].

As far as energy generation, supply, and use are concerned, the keyword is decarbonization. The clean energy
ransition implies quick phasing out of coal, plus an additional effort to decarbonize natural gas. Furthermore, the
GD envisages that the power sector should become primarily based on renewable energy sources. Under this

ramework, it can be easily understood that the further development of solar photovoltaic (PV) power generation is
ound to be a cornerstone [36,37]. The growth in the use of renewable energy sources has been widely documented
ver the last years [16,34,37], and this especially holds for PV. In the last ten years or so, PV capacity has more
han doubled or tripled in Germany, Italy, and several other countries, although the growth was much stronger in
he first half of the decade. The whole European Union has increased its cumulative PV capacity by a factor of
our over the same time span [37]. Similar trends are experienced elsewhere [35,70].

.2. Economic drivers for the uptake of solar photovoltaic energy

Although the cost–benefit balance of solar PV systems has been questioned in the past, recent studies highlight
oth the economic viability and the environmental sustainability of this option depending on a range of climate
nd market conditions [27,56,75]. Technological development aside [23], the financial feasibility is boosted by the
658
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sharp reduction in the cost of PV modules, namely, a steady downward trend over the last four decades [40,51].
The upfront costs of PV systems are expected to further decline in the short to mid-term, which should offset the
decline in public funding [15] and make this source cost-competitive to others [72]. However, economic viability is
not the only explanation for the quick uptake of PV. We are currently facing a growing corpus of studies focusing
on the determinants of solar PV deployment, which range from physical and climatic factors to socio-economic
drivers [2]. Furthermore, spatial interactions, especially in the form of peer effects and neighborhood effects, are
found to play a remarkable role [5]. This implies that considering the spread of PV systems simultaneously over
time and across space is an essential step to draw a comprehensive picture of the phenomenon.

1.3. Aim and structure of the study

Here we aim to investigate solar PV deployment drivers by dealing with fine-grained spatial and temporal data.
o that end, this study adds to the recent literature by setting up various space–time models and searching for
obust estimates, which is both methodologically and computationally challenging [9]. The models are tested on
he installed PV capacity in more than seven thousand Italian municipalities between 2006 and 2011. The remainder
f this paper is arranged as follows. The next section briefly summarizes the known determinants of PV deployment
s found in the recent literature. Section 3 is devoted to presenting the method and the models. Section 4 introduces
he case study and describes the solar PV deployment data analyzed here. Section 5 discusses the results. Lastly,
ection 6 draws the conclusions.

. Literature review

According to the literature published in the last decade, the determinants of PV deployment can be clustered
nto three groups: physical and climatic factors are included in the first set, socio-economic variables are the focus
f the second group, spatial interactions – such as peer effects, neighborhood effects, and spatial spillovers – shape
he third cluster.

As far as physical and climatic factors are concerned, solar irradiance and latitude are often called forth first. They
re controlled for in the analytical models of several studies and found to be significant predictors of PV deployment
5,6,44,66,69], along with terrain surface features and local climate conditions [69]. Similarly, the characteristics of
he built environment - e.g., housing density, proximity to urban settlements, the share of detached houses, age of
he housing stock — are found to play a role in affecting the uptake of PV installations [5,6,20,21,30,43,58,66,68].

Incentive policies and subsidies aside [49,58], among the socio-economic determinants of PV deployment are
emographic aspects such as household size and population density, as well as social features like the share of
wner-occupied homes and the education level [5,8,20,21,43,47,48,66]. The role of disposable income is debated
6] since it is often found to exert a positive influence [5,20,21,65,66], while sometimes it negatively affects the
se of renewable energy sources [8,9,14] or it is weakly related to them [30]. Besides, concerns about rising oil
nd electricity prices push the adoption of PV systems [10,26,30,44,48]. A systematic and comprehensive literature
eview on socio-economic predictors driving residential solar PV adoption has recently been published [2].

A prolific research strand has focused on the possibility that PV deployment is also driven by peer and
eighborhood effects [17]. By this it is meant that the attitude to adopt innovations in general, and specifically
olar PV systems, is partly shaped by the emulation of mainstream behavior or the willingness to stick to social
orms [19]. Those who see friends, colleagues, or neighbors [9,50] adopting PV systems are more willing to adopt
he same systems for themselves too. The same expectation holds for any other kind of group that could trigger social
nteraction [53]. Hence, an individual is more likely to adopt PV systems if a large portion of his social reference
roup does it [39], which gives rise to spatial diffusion patterns [30] when social groups are spatially clustered.
he occurrence of peer and neighborhood effects has been studied using a variety of methods and models: survey-
ased analyses [1,42,49,57,62,76,77]; agent-based models [59,63]; epidemic diffusion models [64]; econometric
pproaches especially based on spatial autoregressive models and spatial panel models with fixed or random effects
3,5,21,30,43,47,48,66]; geographically weighted regression models [6]. All the above-referenced works agree in
dentifying spatial interactions as a key driver to explain the adoption and diffusion of PV systems. Notably, the
otential occurrence of spatial spillovers is indirectly suggested by specific socio-economic predictors, such as in
he case of the positive relationship between the adoption of PV systems and the population that commutes over

alf an hour to work [9].
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3. Method and models

3.1. Space–time models

Let {yst } be a dataset of photovoltaic power system installations, measured on n areal units for T periods; more
recisely, s = 1, 2 . . . n is the spatial index of sites (municipalities), t = 1, 2 . . . T is the time index of periods
years) and N = n × T is the total sample size. Also, let us consider a set of time-invariant explanatory variables
xls}, where l = 1, 2 . . . m is the index of covariates (both physical and socio-economic). The mathematical model

which may represent such data is the Space–Time AutoRegression with eXogenous variables (STARX); assuming
first order dynamics and a single regressor (m = 1), the model is given by:

yst = α + ϕ1 ys,t−1 + ϕ2 ys−1,t + ϕ3 ys−1,t−1 + β1xs + β2xs−1 + est , est ∼ IN(0, σ 2
e ), (1)

here est are Independent Normal (IN) residuals and α, ϕi , β j , σ are fixed coefficients. Basically, the solar PV
ower installed on each s-th site depends on its previous temporal value ys,t−1, on its contemporaneous nearest

neighbor (NN) ys−1,t , on its time lagged NN term ys−1,t−1 and on the exogenous regressors and their NN values
xs−1. The time-variability can be extended to exogenous variables as xlst ; however, major physical covariates (as
latitude and altitude) are time-invariant and socio-economic covariates (as population density and housing stock)
are nearly so in the medium term, or they may be measured on a census (decadal) basis only.

By extending the space–time dynamics to orders p, q > 1, and considering m time-varying regressors, the model
of Eq. (1) can be written in its general STARXm(q,p) form as follows:

yst = α0 +

q∑
j=0

p∑
i=1

ϕ j i ys− j,t−i +

m∑
l=1

q∑
j=0

p∑
i=0

βl j i xl,s− j,t−i + est , est ∼ IN(0, σ 2
e ), (2)

This representation encompasses various classes of models, such as the dynamic panel [25, p. 96] if one includes
a time-invariant latent component +δzs that represents the peculiarities of spatial units. It is worth mentioning that
the NN relationship can be extended to encompass k-nearest neighbors (k-NN). However, the strength of the spatial
relationship is expected to fade as the distance increases (Fig. 1), in accordance with the so-called Tobler’s first law
of geography: “everything is related to everything else, but near things are more related than distant things” [71, p.
236]. Also, by dropping the third sum (in i) in the Eq. (2), one has an extension of the model of Eq. (1) to multiple
regressors.

Fig. 1. Example of k-NN with k = 3 (a): distance and expected strength of the spatial relationships (b).

The primary characteristic of the model in Eq. (2) is the STAR component of the first double summation. This
omponent is useful in forecasting [31] and must be properly designed; however, in the study of the PV determinants
660
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the unbiased estimation of coefficients βl j i is the major concern for energy policy decisions. It is known that in the
presence of autocorrelation of errors est the parameter estimates are not efficient, and their standard errors are not
consistent [4], so that the statistical inference on the models is biased. Once again, the dynamic structure of Eq. (2)
must be properly designed, both at temporal and spatial level, to generate uncorrelated residuals.

A related statistical issue arises from the spatial location of the NN or k-NN terms ys− j,t−i . If they are unrestricted
(at 360 degrees), then the “regressors” ys− j,t−i in the model of Eq. (2) may be correlated with the errors est , making
the estimates of βl j i also biased (see Appendix). In general, the identification of causal dynamics is much more
challenging across space than in time. This is because relationships over time are unidirectional (from the past
to the present, and from the present to the future), while relationships across space are not (from a space unit
to another space unit, and vice versa). The issue is more severe than the omission of terms ys− j,t−i , and gives
rise to several estimation problems in the solar PV field too [9]. It deserves mentioning that those problems fuel
“the skepticism exhibited by some authors with respect to the claim of early studies of neighborhood effects” and
that “caution is due to methodological challenges in estimation. In some cases, statistical problems invalidate the
results”. [22, p. 540]. The issue must be solved by properly constraining the adjacent NN or k-NN terms to a specific
one-quadrant direction, e.g. to the northwest (NW). The (k-)nearest northwestern neighbor(s) NNWN (k-NNWN)
constraint (Fig. 2 is consistent with the unidirectional (past–present) dynamics of the temporal component, where
y·t−i and e·t are uncorrelated. Also, it is similar to the identifiability constraints of classical econometric models,
which allows the consistency of parameter estimates [4].

Fig. 2. The (k-)nearest northwestern neighbor(s) NNWN (k-NNWN) constraint.

To further explain the issue, let us use a vector notation by arranging the model components as yt =

[y1t . . . yst . . . ynt ]′, X t = [x1t . . . xlt . . . xmt ] the matrix of regressors with columns xlt = [xl1t . . . xlst . . . xlnt ]′,
′
and et = [e1t . . . est . . . ent ] . Following Elhorst [25], the model of Eq. (2) with p = 1, q = 1 can be written in
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matrix form as follows:

yt = α1n + ϕ1 yt−1 + ϕ2W yt + ϕ3W yt−1 + X tβ1 + W X tβ2 + et , et ∼ IN(0, Inσ
2
e ), (3)

here 1n is a unit vector of length n, β1 = [β11 . . . β1l . . . β1m]′ and β2 = [β21 . . . β2l . . . β2m]′ are the coefficients,
nd W is a n × n contiguity matrix, whose rows ws have 1 in the positions where the s-th unit is adjacent to others
nd 0 elsewhere. Model (3) becomes a panel data system by adding the latent components (u + vt 1n) of spatial
nd temporal, fixed or random effects, which characterize the specific pattern of each unit. The estimation of these
omponents requires a state–space formulation or the inclusion of dummy variables for each unit; however, in the
odel of Eq. (3) we assume that data matrix X t includes major local factors and thus we avoid treating it also

s a panel. Further, in the econometric literature the residual et is sometimes assumed as spatially correlated as
et = θW et + vt ; this condition involves nonlinear estimators and can be avoided by introducing in Eq. (3) the
econd-order AR term ϕ4W 2 yt , where W 2 is the matrix of second NN contiguity (still in the NW direction).

.2. Spatial weights matrices

The sparse array W is also called spatial weights matrix and its structure is defined by the proximity rule which
s adopted, e.g., single or multiple connections and single or multiple directions, etc. The simplest choice is the first
N link, which implies that every row ws has a single 1; however, from Eq. (3) the component W yt may become

orrelated with the residual et , thus violating a basic assumption of regression models. The consequence is the bias
thus, inconsistency) of common estimators (see Appendix). To solve this drawback, one may constrain the matrix

W in a one-quadrant direction (e.g., to northwest, NW), so that each component ys−1,t = w′
s yt is independent of

st at any t, namely E
(
est |ys−1,t

)
= 0. Accordingly, every row ws has a single 1 if and only if the first NN link is

laced in the NW quadrant (Fig. 3), thus corresponding to the notion of nearest northwestern neighbor (NNWN).
n practice, with the NW constraint, the errors est are all placed in the south, east and south-east (SE) directions
ith respect to the observation ys−1,t (see Appendix); notice that this approach may also allow for multiple NN

elections, provided they all satisfy the NW constraint.

Fig. 3. Constraining the spatial weights matrix to the first nearest northwestern neighbor (NNWN).

The approach of constraining W unidirectionally is typical of lattice data, as digital images yi j t [13,31], where
the spatial index s is replaced by the indices i,j of row and column. For example, the westward lagged model
yi j t = α + ϕyi, j−1,t + ei j t has a matrix W with 1 under the main diagonal and 0 elsewhere. It is statistically
identified, because the spatial predictions ŷi j+1t can sequentially be computed from ŷi j t and an initial condition ŷ0

on the left border. Instead, the two-sided filter yi j t = α +ϕ(yi, j−1,t + yi, j+1,t )/2+ei j t cannot be used in predictions,
s yi, j+1,t is unknown and depends on ei, j+1,t . This example can be easily extended to models with time-lagged
egressors; it shows that spatial identification of the W matrix is strictly related to the sequential computation of

redictions, as in pure time series models.
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Under the NW constraint of the W matrix, the OLS estimator of STARX models is consistent (see Appendix).
To derive it, we can write the model (3) in vector form as yt = Z′

tδ + et , where δ′
=

[
α, ϕ1, ϕ2, ϕ3, β

′

1, β
′

2

]
is

he vector of parameters and Zt =
[
1n, yt−1, W yt , W yt−1, X t , W X t

]
is the matrix of regressors, with spatial and

emporal lagged data. Thus, defining the stacked data matrix ZN = [Z1; Z2; . . . ; ZT ], with N = n · T , one can
btain the OLS estimator of the model (3) as δ̂N = (Z′

N ZN )−1 Z′

N yN , where yN =
[

y1; y2; . . . ; yT
]
. As shown in

he simulation experiments of Appendix, the matrix W is triangular under the one-quadrant contiguity constraint,
nd it allows δ̂N to be consistent with unbiased covariance matrix Σ̂ N = σ̂ 2

e (Z′

N ZN )−1.
In the application to the data of PV deployment, we also estimate the model of Eq. (3) in temporal local form,

y regressing the ending data yT on its previous and surrounding values W yT −i , i > 0, and on the fixed available
egressors. In this case, the model of Eq. (3) becomes:

yT = α01n +

p∑
i=1

ϕ1i yT −i +

p∑
i=0

ϕ2i W yT −i +

m∑
l=1

β1l xlT +

m∑
l=1

β2l W xlT + eT (4)

In vector form, the matrix of regressors is given by Zn =
[
1n, W yT , Y T , WY T , XT , W XT

]
, where Y T =

yT −1 . . . yT −p], which has n rows; here, the OLS δ̂n provides local (at T) estimates on the previous years.

.3. Robust estimation

The interest in the OLS estimator is motivated by its flexibility and adaptability in the presence of anomalous
bservations (outliers). These produce significant bias on coefficients; however, OLS method can be made robust
resistant) to outliers in a simple way. Since for the model of Eq. (3) it minimizes the sum of squared residuals

δ̂N = arg min
T∑

t=1

( yt − Z′

tδ)′( yt − Z′

tδ) = arg min
T∑

t=1

n∑
s=1

e2
st (δ)

robust version can be obtained by replacing the quadratic criterion, with a less divergent loss function (Fig. 4). For
xample, the absolute value |est | provides the least absolute deviation (LAD) estimates, which are mildly robust. A
ore robust solution is provided by a function ρ(·) which censors large values outright:

δ̂R = arg min
T∑

t=1

n∑
s=1

ρ[est (δ)], with ρ (e) = γ if |e| > γ. (5)

The threshold constant 0 < γ <∞ is selected according to the rate of outlier contamination; in general, it must
chieve a compromise between bias and efficiency of estimates. In practice, small values of γ increase the resistance
o outliers, and so their unbiasedness, but reduce their efficiency. Unfortunately, there are not automatic rules for
electing γ [32], as the outlier contamination is unknown both in rate and size.

One of the preferred solutions for the ρ-function is the bisquare one of W. Tukey [46]:

ρ (e) = {1 − [1 − (e/γ )2]3
} · γ 2/6 if |e/σe| ≤ γ,

= γ 2/6 if |e/σe| > γ,
(6)

The function in Eq. (6) is discontinuous at e = γ , and this requires iterative algorithms for the minimization of
q. (5), including the mildly robust LAD estimates. Under Gaussian residuals, the design of γ in Eq. (5) which
llows 95% relative efficiency with respect to OLS estimates is given by γ = 4.685; however, smaller values
< γ < 4 may be necessary to achieve unbiasedness under heavy outlier contamination (>5%). Robust estimation

f the scale parameter σe is necessary for running the estimator in Eqs. (5)-(6); it is usually based on the median
bsolute deviation (MAD):

σ̂MAD = median(|êst − median(êst )|) · 1.4827, (7)

his is robust against anomalous residuals and is consistent for σe under Gaussianity of est . However, MAD of
q. (7) underestimates σe in general conditions, thus its value is replaced by σ̂R which satisfies the first derivative
quation N−1 ∑T

t=1
∑n

s=1 ρ ′(êst/σe) = 0 [74].
Robust estimates of σe are also necessary for model evaluation, e.g. with the classical index R2

= 1 − (σ̂e/σ̂u)2,
2
here σ̂u is computed by robust estimation the mean model yst = α + ust . However, a RMAD index can be directly
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O

Fig. 4. Estimation functions: (a) Least squares (OLS); (b) Absolute deviations (LAD); (c) Robust winsorized (Huber); (d) Robust bisquare
(Tukey).
Source: Bramati [12] and Grillenzoni [32].

computed on the models (3)–(4) as the squared robust correlation between (yst , ŷst ), where ŷst are the fitted values
estimated with (5)–(6). A robust correlation coefficient, based on the MAD of standardized variables, is as follows
[67]:

Rxy =
MAD2 (u) − MAD2 (v)

MAD2 (u) + MAD2 (v)
, with u, v =

x − E (x)
√

2MAD (x)
±

y − E (y)
√

2MAD (y)
. (8)

In Appendix, simulation experiments are conducted on contaminated data of the model in Eq. (3); they show
that the estimation performance of the method of Eqs. (5)–(6) depends both on the selection of γ and W . As in
LS, the one-quadrant specification WNW provides unbiased estimates, even in the robust estimation.
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4. Data

In Italy, the introduction of support schemes for solar PV energy dates back to the early 2000s, with a major
evision in 2005. The EU-derived (Directive 2001/77/EC) “Conto energia” program and subsequent adjustments
nvolve a nationwide homogeneous (without regional differences) set of tools, the most important of which are
eed-in-tariff and net metering [24,54,61]. The data on all the subsidized photovoltaic plants – both residential and
ndustrial, either building-integrated or ground-mounted – are gathered from the Atlasole geographic information
ystem (now Atlaimpianti1), which is managed by GSE Plc, a state-owned company whose mission is to foster and
upport the use of renewable energy sources in the country.

As far as the time dimension is concerned, we consider the installed photovoltaic capacity between 2006 and
011, which has been steadily growing (Fig. 5) thanks to the abundant financial support during that time window
11,59]. Even though there have been changes over time, we can essentially consider the program uniform for
he purpose of this study. Firstly, the time window we consider mostly overlaps with the first (2005–2006, with
nstallations until 2010) and second (2007–2010) “Conto energia” program, while the two subsequent programs
ffected the systems put into operation in the first and second half of 2011, respectively. The first program featured
cap on the cumulative installed PV capacity, but the subsequent programs progressively raised it, so the subsidy

cheme was renewed. We limit the analysis to 2011 since, around that time, the program has undergone remarkable
hanges to put a cap on its high costs [59]. Only in mid-2013, thus beyond the time window of this study, the
lanned cumulative installed PV capacity was reached, and the subsidy scheme discontinued.

As regards the spatial dimension, the observations consist of the installed photovoltaic capacity in 7797
unicipalities (LAU level 2 according to the European Local Administrative Units classification). It means that
ore than 96% of the 8,092 municipalities at the time have at least one subsidized PV plant and, hence, are covered

y the analysis. The spatial dependence between the observations is modeled according to the notion of the nearest
orthwestern neighbor (NNWN), as explained and motivated in the previous section. The excerpt of the map below
Fig. 6) shows the NNWN modeling results on the municipalities located southwest of the city of Venice. Due to
he unidirectional relationship starting from the northwest, 27 municipalities placed along the north and northwest
orders lack an NNWN, so they are dropped from the analysis. As it can be seen, the NNWN modeling gives rise
o a network that consists of multiple threads, which sometimes branch into two or more sub-threads. That means
hat a parent node – namely, a municipality – can have more than one child node, but a child node has one and
nly one parent node.

The exogenous variables belong to two main domains: physical conditions and built environment the former,
emographic and socio-economic drivers the latter. Physical conditions are described by elevation (Elv), latitude

(Lat), and land area (Lan). Both Lat and Elv are expected to take on a negative sign; this is because the lower the
atitude and elevation, the more and larger PV plants we are supposed to find. On the contrary, Lan should show

a positive sign since the larger a municipality is, the more the PV capacity it can host is. The built environment
aspects taken into consideration are as follows: residential buildings (Rbd); share of residential buildings built after
2006 (R06); percentage of residential buildings built after 1981 (R81).

As far as the demographic and socio-economic drivers are concerned, we expect that the variables expressing
higher levels of both economic development – employment rate (Emp), number of firms’ local units normalized
by population (Flu) – and education – the percentage of people with a secondary school diploma (Ser) and the
percentage of graduates (Her) – are positively correlated with the installed PV capacity. We also include two
other predictors about commuting – commuter students (Csr) and commuter workers (Cwr), both normalized by
population – to catch potential spatial spillovers indirectly. Concerning the disposable income per capita (Inc), we
aim to test whether it is significant or not and the sign it takes on. We consider the installed PV capacity in 2011 as
the independent variable both since, shortly after that time, there have been changes in the setting and effectiveness
of the support policies [55] and because the demographic and socio-economic predictors refer to the same year.
The source for those variables is census data gathered and published by the National Institute of Statistics.

1 See https://www.gse.it/dati-e-scenari/atlaimpianti (last accessed 29.06.2021).
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Fig. 5. Cumulative installed capacity in Italian municipalities between 2008 and 2011.

5. Results and discussion

5.1. Results for the local model

The tables below report 95% statistically significant estimates for the local model of Eq. (4) concerning total (yoa ,
Table 1) and normalized by population (ynorm , Table 2) installed PV capacity, respectively. We will not bother the

reader with the interpretation of the OLS estimates as they are irredeemably flawed, even with heteroskedastic and
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Fig. 6. Modeling of the spatial dependence relationship according to the notion of the nearest northwestern neighbor (NNWN)
Source: authors’ study based on data from Google Earth and National Institute of Statistics.

Table 1. Parameter estimates of the model in Eq. (4), dependent: yoa , at t = 2011 (zl are t-statistics).

Method OLS OLS-HAC LAD R-Winsorized R-Bisquare

xl βl zl βl zl βl zl βl zl βl zl

Const. −491.76 −1.799 84.337 0.226 −34.05 −1.713 −87.807 −1.353 −15.259 −0.675
ys,t−1 0.5413 23.352 0.7019 3.053 0.9955 5.625 0.9777 158.700 0.9939 341.810
ys,t−2 1.1430 14.526 1.1679 3.280 1.0330 49.465 0.6590 66.574
ys,t−3 2.8922 14.091 2.8384 2.603 1.7941 5.155 1.4411 26.024 1.4926 56.928
ys,t−4 0.6864 4.374 2.8071 38.648
ys,t−5 20.101 4.877 22.952 2.328 15.490 2.092 11.514 10.220
ys−1,t 0.0674 7.191 0.0852 3.531 0.0339 13.200
ys−1,t−1 0.0573 2.870 0.0610 2.909 0.0342 5.926
ys−1,t−2 0.2344 3.058 0.1497 7.246 0.0258 3.185
ys−1,t−4 −1.2764 −2.140 −1.2086 −2.320
ys−1,t−5 −2.7847 −2.666
Elv −1.4502 −11.469 −1.4454 −11.53 −0.1030 −4.310 −0.3264 −9.897 −0.0742 −4.924
Lan 21.111 27.481 21.723 9.161 1.2276 3.295 3.3776 16.538 0.3573 3.748
Pop −0.0026 −2.617 0.0140 2.169 0.0131 50.391 0.0026 21.168
Pops−1 −0.0015 −2.544 −0.0014 −3.107 −0.0011 −3.998 −0.0012 −7.536
Inc −0.0036 −3.456
Incs−1 −0.0356 −2.800 −0.0332 −2.458 −0.0141 −3.259
Emr −2342.5 −1.988 −2944.3 −3.562
Emrs−1 168.83 2.900 598.70 2.873
Unrs−1 −1844.4 −2.429
Her 5165.5 4.002 5800.7 3.829
Hers−1 321.81 2.868 1166.1 2.674
Ser −119.87 −2.564

(continued on next page)
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Table 1 (continued).

Method OLS OLS-HAC LAD R-Winsorized R-Bisquare

xl βl zl βl zl βl zl βl zl βl zl

Sers−1 −1500.6 −2.054 −215.10 −3.867 −699.82 −2.785
Csr 3280.8 2.679
Csrs−1 5115.7 4.366 4673.1 4.049
Cwr 4081.1 2.983 3385.2 3.444 327.27 5.126 802.67 3.479 258.76 4.072
Flu 3218.8 2.031 3402.0 2.195 377.24 3.060 908.53 2.250
R06s−1 −2175.4 −1.999 −1915.0 −2.040

σe 2858.34 2897.84 3141.9 757.9a 360.21a

R2 0.420 0.404 0.344b 0.570c 0.584c

-log(LF) 72849.26 72955.9 65978.51 . .
m 18 18 17 19 9
Chi2d 5219.9 4684.4
Chi2e 15802.4 12641.0 130909

aRobust σe.
bPseudo R2

= 1 - LFm/LF0.
cSquared robust corr.

(
y, ŷ

)
.

dHeteroskedasticity test.
eNormality test.

Table 2. Parameter estimates of the model of Eq. (4), dependent: ynorm , at t = 2011 (zl are t-statistics).

Method OLS OLS-HAC LAD R-Winsorized R-Bisquare

xl βl zl βl zl βl zl βl zl βl zl

Const. 0.7232 9.646 0.8346 7.787 0.0022 0.177 0.0281 2.008 −0.0111 −1.023
ys,t−1 0.0303 2.558 0.4003 162.180 0.4294 213.560
ys,t−2 0.5021 7.564 0.7145 2.273 0.2903 20.993 0.2172 19.300
ys,t−3 1.3701 5.403 1.4399 3.913 1.4868 4.974 1.1327 21.446 0.8771 20.392
ys,t−4 0.3311 2.679
ys−1,t 0.1451 11.351 0.1543 4.515 0.0796 5.552 0.0713 27.128
ys−1,t−1 0.0179 2.088 0.0342 19.217 0.0362 24.971
ys−1,t−2 0.1842 2.422
Elv −0.0002 −4.770 −0.0001 −4.249 −0.0001 −12.350 −0.0001 −10.136 −4.3E−05 −7.933
Lan 0.0002 7.476 0.0003 8.291 0.0002 7.268
Inc −2.2E−05 −5.984 −2.4E−05 −7.556 −2.8E−06 −5.660 −5.2E−06 −6.601 −1.7E−06 −2.909
Incs−1 −1.8E−06 −3.487
Emr 0.1473 3.339 0.2387 3.734
Emrs−1 0.0957 4.021 0.1185 3.681
Unr −0.0347 −1.793
Hers−1 0.1510 3.568
Ser −0.8764 −3.859 −0.9035 −3.286 −0.1057 −3.528 −0.1645 −3.490
Sers−1 −0.0905 −3.085 −0.0790 −2.224
Csr −1.4924 −4.637 −1.8322 −4.489
Cwr 1.0660 5.531 1.0517 5.246 0.1748 4.057 0.1873 2.474 0.1672 4.104
Flu 1.1098 2.770 1.1488 2.847 0.1986 3.835 0.3323 3.884

(continued on next page)

autocorrelation consistent (HAC) standard errors [52]. The issue with OLS lies in the great number of large outliers
(Fig. 7), which make the parameter estimates βl and their t-statistics zl biased and, therefore, unreliable. The typical
diagnostic check is the analysis of residuals with respect to their 99.9% Gaussian acceptance region:

⏐⏐êst
⏐⏐ < 3σ̂e

(Fig. 7, bottom panel). Dropping anomalous data or replacing them with OLS fitted values ŷst is the usual remedy.
However, the serial nature of observations prevents this approach from being applicable. In addition, a large amount
of data (way more than 10%) should be repeatedly removed. Because of all the reasons above, we resort to the
robust estimator of Eqs. (5)–(6), which has the advantage of keeping unchanged the dataset. Looking at the results,

one may notice that the OLS method inflates the number of significant regressors but underestimates the global
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Table 2 (continued).

Method OLS OLS-HAC LAD R-Winsorized R-Bisquare

xl βl zl βl zl βl zl βl zl βl zl

Rbd −0.0782 −3.096
Rbds−1 −0.0839 −3.177 −0.0700 −4.254 −0.0105 −3.083 −0.0147 −2.783
R81 0.0179 2.439 0.0297 2.716

σe 0.750 0.754 0.775 0.156a 0.127a

R2 0.054 0.046 0.286b 0.234c 0.207c

-log(LF) 8786.08 8822.35 1296.64
m 13 10 17 13 13
Chi2d 142.140 (p0.0080) 112.490 (p0.0002)
Chi2e 172579.0 173233.0 181562.0

aRobust σe.
bPseudo R2

= 1 - LFm/LF0.
cSquared robust corr.

(
y, ŷ

)
.

dHeteroskedasticity test.
eNormality test.

Fig. 7. Installed PV capacity data (top panel) and residuals of the OLS estimation for the model of Eq. (4) (bottom panel).

fitting performance. Both these features are clear symptoms of bias. Instead, the robust estimations substantially
reduce the number of explanatory variables and make them consistent with the value of the R2 index computed
with Eq. (8).

Most of the time and space lags are significant and take on a positive sign, confirming that serial and spatial
dependence occurs in the analyzed data. The time-dynamic component is of strong significance in shaping the
installed PV capacity – also, as expected, the strength of that relationship decreases as time increases – whereas the
spatial dynamic is not that important. However, both the overall and normalized installed PV capacity is positively
affected by the simultaneous (ys−1,t ) and antecedent (ys−1,t−1) PV adoption in the surrounding, confirming that peer
ffects and neighborhood effects are likely to affect the phenomenon under study.

As was anticipated, physical factors do matter, especially elevation with a negative sign and land area with a
ositive one. Most remarkable is that latitude is not a significant predictor of both overall and normalized installed
V capacity. One could argue that changing the slope of the panels lessens the constraint represented by the
eographical location. Even so, there is a significant difference in the hours of sunlight between northern and
outhern Italy, especially during wintertime. Hence, it seems plausible to conclude that the subsidies provided with

he support schemes have effectively sustained the adoption of PV systems in the less suitable areas. There are
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weak signs that the built environment (percentage of residential buildings built after 1981) is somehow related to
the installed PV capacity.

Demography is an important driver since population turns out to be the most significant exogenous predictor
f the overall installed PV capacity. Just a few findings are worth noting concerning the other socio-economic
ovariates. There is likely an inverse relationship between the disposable income per capita and the total installed PV
apacity, and there is definitely an inverse relationship as far as the installed PV capacity normalized by population
s concerned. Although the actual effect of income on PV is highly debated and a majority of studies found it
ositive, the opposite result we find in our case study could signal that public subsidies have been effective in
upporting PV adoption in less wealthy areas. Finally, it deserves mentioning that the share of commuter workers
n the population is positively related to the total and normalized installed PV capacity, and the spatial lags of a
ew predictors (employment rate, secondary- and higher education rate) are too. We believe that it is a further sign
f spatial spillovers, which reinforce the conclusion that peer and neighborhood effects are significant in shaping
he choices about PV energy.

.2. Results for the global model

As a final analysis, we consider the space–time model of Eq. (3) with first-order lags t −1, s−1. According to the
description in Section 3.2., its estimation is performed as in panel data models, namely, by stacking the time series
of the spatial units and treating the time-invariant exogenous regressors as fixed-effects of the spatial units. Once
again, the OLS estimates are meaningless due to massive outliers; they are hence omitted, and the robust approach
of Eqs. (5)–(7) is applied. The tables below report the results concerning total (yoa , Table 3) and normalized by
population (ynorm , Table 4) installed PV capacity, respectively.

Table 3. Parameter estimates of the model in Eq. (3), dependent: yoa (zl are
t-statistics).

Method R-Winsorized R-Bisquare

xl βl zl βl zl

Const. −8.923100 −3.640 −0.443000 −0.304
ys,t−1 1.403600 2510.9 1.008900 2644.8
ys−1,t 0.058016 239.77 0.005187 31.263
ys−1,t−1 0.040089 70.674 0.040462 103.84
Elv −0.008135 −5.037
Lan 0.092531 9.461
Pop 0.000989 82.486 0.000385 51.243
Pops−1 −0.000211 −28.253 −0.000024 −4.726
Cwr 35.333000 4.792 9.522800 2.112
Flu 43.238000 2.144

σe 86.39a 59.36a

R2 0.636b 0.633b

aRobust σe.
bSquared robust correlation

(
y, ŷ

)
.

Both the robust estimation functions – winsorized and bisquare – yield parsimonious results, with just a few
significant predictors. Space and time lags do strongly matter, and the time trend outweighs the spatial dynamic.
The global, panel-like model confirms the role played by physical factors, except for latitude, in facilitating – see
the positive sign of the municipal land area – or in limiting – see the negative sign of elevation — the adoption
of PV systems. We get further evidence that the overall installed PV capacity is strongly tied to population and,
less markedly, to the share of commuter workers in the population, which can be interpreted as a confirmation that
spatial spillovers occur. Besides, the normalized installed PV capacity is related to the employment rate, and there
are weak signals of positive relationships with income and the percentage of commuter students.

Models in Tables 1–4 were built as in classical multiple regression, by inserting endogenous and exogenous
regressors together and then by sequential elimination of 95% non-significant terms. To evaluate how much the
exogenous variables X , are actually correlated with the PV capacity Y , one can first regress it on its lagged
ls st
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Table 4. Parameter estimates of the model in Eq. (3), dependent: ynorm (zl are
t-statistics).

Method R-Winsorized R-Bisquare

xl βl zl βl zl

Const. −0.0044269 −5.195 0.0003838 0.755
ys,t−1 0.5729900 1697.2 0.2778500 1015.8
ys−1,t 0.1056400 524.54 0.0419880 257.39
ys−1,t−1 0.0389920 158.23 0.0472360 236.61
Elv −0.0000020 −4.857
Lan 0.0000138 6.218 0.0000060 3.364
Inc 0.0000001 3.732
Emr 0.0145420 9.894
Csr 0.0137800 3.496
Rbd −0.0011018 −3.782

σe 0.02183a 0.01767a

R2 0.460b 0.458b

aRobust σe.
bSquared robust correlation

(
y, ŷ

)
.

terms Ys− j,t−i and then its “residual” yst (say) on the variables Xls — all of these are performed with the robust
estimators (5)–(6). The correlation R(yst , ŷst ), where ŷst is the fitted value of the second regression, provides the
partial correlation and is estimated with the robust formula (8). In our case study, it ranges from +0.27 to +0.36,
depending on the various classes of models; in any event, they are all 99% significant with the classical F-statistic.

6. Conclusions

Modeling the phenomenon of solar PV deployment is truly challenging. It requires taking into account both
the trend over time and across space; hence, the adoption of suitable space–time models is warranted. Besides,
controlling for outliers is a major issue when dealing with big data; thus, employing robust estimation methods is
inescapable. This study adopts robust estimation methods and space–time models to analyze the deployment of solar
PV systems in Italy. Building on highly granular data, we use 7,797 observations of the installed PV capacity on a
municipal basis and focus on the time window 2006–2011. The specificity of our approach lies in the fact that we
model the spatial dynamic according to the notion of the nearest northwestern neighbor (NNWN). This means that
we neither consider the nearest neighbor (NN) nor the k-nearest neighbors (k-NN) within a given radius, namely,
the whole ring surrounding each municipality as usual in spatial autoregressive models. Instead, we impose a kind
of identifiability constraint by limiting the spatial dependence relationship to the northwestern quadrant of each
observation. That being so, the spatial dynamic is made unidirectional, just as the time dynamic is.

We show that serial and spatial dependence is an inherent characteristic of the analyzed data. The time-dynamic
component is found to be more important than the spatial dynamic, and the strength of the relationship decreases
as time increases. Regardless, the space lags are significant, which implies the occurrence of peer effects and
neighborhood effects. Once serial and spatial dependence is properly taken into account, exogenous covariates
narrow down to just a few physical (land area and elevation), demographic (population), and socio-economic drivers
(mainly employment and commuting). Finally, it is worth noting that we found a mostly negative relationship
between the installed PV capacity and income and no relationship with latitude. We interpret this as a signal of the
effectiveness of the support schemes and the related subsidies in incentivizing the adoption of solar PV systems in
less wealthy and less suitable areas of the country.
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Appendix. On triangular contiguity matrices

To briefly show the statistical issues that the misspecification of the spatial lag structure of the model in
q. (2) creates, let us consider a simple SAR model in matrix version of Eq. (3), namely, y = ϕW y + e with

e ∼ N(0, Inσ
2
e ) independent and W the contiguity matrix. Notice that the model can be rewritten in reduced form

s y = (In − ϕW )−1e and this shows a first issue about the conditions of invertibility of the response matrix. By
etting x = W y, the ordinary least squares (OLS) estimator of ϕ is given by ϕ̂n = (x′x)−1x′ y = ϕ + (x′x)−1x′e,
nd its unbiasedness E

(
ϕ̂n

)
= ϕ holds only if the expectation E

(
x′e

)
= 0. Now, from previous expressions we

ave E
(
x′e

)
= E[e′(In − ϕW ′)−1W ′e], which is 0 only if the trace (tr) of the matrix G′

= (In − ϕW ′)−1W ′ is 0;
n fact, E

(
x′e

)
= E

[
tr

(
e′G′e

)]
= tr

[
GE

(
ee′

)]
.

In the spatial econometric literature, the weights matrix W is usually based on circular neighbors (e.g. of rook or
ueen type); these involve tr (G) ̸= 0 and thus the inconsistency of OLS method. To address this issue, alternative
stimators have been proposed, such as maximum likelihood (ML) [45], generalized method of moments (GMM)
41], and indirect inference (II) [7]. However, under regularity conditions, OLS enjoys optimal properties and by
onstraining W to a single spatial direction, its optimality is preserved. In the lattice literature [31], unidirectionality
s the favorite constraint, the more severe of which is the one-quadrant specification: yi j = ϕyi−k, j−h + ei j , with
, h = 0, 1. As in standard time series, this allows recursive forecasting and causal decomposition in the moving
verage form yi j =

∑
∞

k=0
∑

∞

h=0 ϕk+hei−k, j−h .
Using the vector notation y = ϕW y + e, one can also show that the full one-quadrant model yi j = ϕ(yi, j−1 +

yi−1, j−1 + yi−1, j )/3 + ei j involves a lower triangular matrix W , with 1/3 in the three lower sub-diagonals. The
riangularity of W is also retained in the areal data model ys = ϕys−1 + es , provided that the observations ys
n the vector y are sorted by the distance from the upper-left corner. In practice, if l s = (is, js) are the spatial
oordinates of observations ys and D (.) is the Euclidean distance, then the ordering in the vector y must be such
hat D (l s−1, l0) ≤ D (l s, l0) for all s, where l0 is the upper-left corner. In these conditions, the response matrix
In − ϕW )−1 is always invertible and tr (G) = 0; in particular, each component ys of y can be expressed as a
unction of es−k , k > 0 only, and E

[
(W y)′ e

]
= 0. Notice that these properties do not hold in the case the terms

ys−1 = W y are just defined as the nearest neighbors of ys and/or ys are not ordered.
Previous results can be extended to more complex systems with exogenous regressors and space–time dynamics.

or the STARX system (2), we carry out simulation experiments to show the consistency of OLS in the presence
f unidirectional specification of the matrix W . In particular, for the model (1), with single regressor xt ∼ U (0, 1)

nd coefficients α = 1, β1 = 2, β2 = −1, ϕ1 = 0.6, ϕ2 = 0.5, ϕ3 = −0.5, σe = 1, we generate n = 100 random
patial points is, js ∼ U (0, 1) and T = 100 time periods. With these coordinates, we built the matrices W 1,2 of
imple (circular) NN and upper-left NN (Fig. A.1), and generate the data with the model (3) written in reduced
orm:

yt = (In − ϕ2W)−1 [
α1n + (ϕ1 + ϕ3W) yt−1 + (β1 + Wβ2) xt + et

]
(A.1)

Finally, we apply the OLS estimator δ̂N = (Z′

N ZN )−1 Z′

N yN , with N = n · T , to the matrix ZN composed by the
tacked blocks Zt =

[
1n, xt , W xt , yt−1, W yt , W yt−1

]
, as in panel models. We replicate the procedure M = 1000

imes and we compute mean values and root mean squared errors: RMSE j = [M−1 ∑M
i=1(δ̂i j −δi j )2]1/2 of estimates,

ogether with the p-values of normality test statistic of Jarque and Bera [38].

Table A.1. Results of simulation experiment on the model (1) estimated with OLS
with matrix WNN (first block) and WNW (second block). Statistics are computed on
M = 1000 replications.

α0 (1) β1 (2) β2 (−1) ϕ1 (0.6) ϕ2 (0.5) ϕ3 (−0.5)

Mean 0.6015 1.9709 −1.3752 0.7662 0.5369 −0.5424
RMSE 0.3994 0.0439 0.3768 0.1663 0.0376 0.0430
N-test 0.3002 0.9352 0.4759 0.5835 0.9097 0.1774

Mean 0.9988 2.0000 −0.9984 0.5999 0.5000 −0.4998
RMSE 0.0394 0.0347 0.0369 0.0074 0.0068 0.0079
N-test 0.4184 0.1809 0.3924 0.1427 0.1441 0.8721

The results are reported in Table A.1; they show a significant better performance of OLS in the model with
ne-quadrant W , with respect to the simple NN contiguity. The simulation experiment is extended to data
NW
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h
t
e

Fig. A.1. Plot of n = 100 spatial points is , js ∼ U (0, 1), and their NN and NW connections (a,b); Corresponding spatial weights matrices
W (where NW is triangular) (c,d).

Fig. A.2. A sample realization yt of the model in Eq. (A.1) and its contamination with outliers y∗
st = 30, −70, 50 placed at random locations

s∗
∼ U (1, n) at each t .

Table A.2. Results as in Table A.1, but computed on series contaminated as in
Fig. A.2 and M = 100 replications.

α0 (1) β1 (2) β2 (−1) ϕ1 (0.6) ϕ2 (0.5) ϕ3 (−0.5)

Mean 2.0601 2.0181 0.1259 0.0693 0.3931 −0.3005
RMSE 1.0775 0.3264 1.1651 0.5309 0.1074 0.1998
N-test 0.6356 0.6148 0.6902 0.8730 0.5236 0.0000

Mean 1.5519 1.9220 0.0508 0.0737 0.4881 −0.2372
RMSE 0.6047 0.3341 1.1058 0.5268 0.0149 0.2636
N-test 0.8151 0.8269 0.3645 0.1262 0.9358 0.1848

contaminated by outliers and to the robust estimators (5)–(6). The data yt of the model are contaminated with
three fixed outliers y∗

st = 30, −70, 50, placed at random locations s∗
∼ U (1, n) for each t (Fig. A.2); these outliers

eavily bias the OLS estimates for both W matrices (Table A.2). Instead, the results of robust estimates (5)–(6) with
uning constant γ = 2 and M = 100 replications are displayed in Table A.3; they show a satisfactory performance,
specially with the matrix W . Hence, the one-quadrant constraint does also work with general estimators; these
NW
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Table A.3. Results as in Table A.2, but provided by the robust estimator (5)-(6) with
tuning constant γ = 2.

α0 (1) β1 (2) β2 (−1) ϕ1 (0.6) ϕ2 (0.5) ϕ3 (−0.5)

Mean 0.8725 1.9788 −1.1417 0.6686 0.5125 −0.5249
RMSE 0.1343 0.0613 0.1525 0.0693 0.0129 0.0252
N-test 0.7923 0.9103 0.3008 0.4035 0.1915 0.1431

Mean 0.9987 2.0056 −1.0050 0.6013 0.5000 −0.5007
RMSE 0.0357 0.0418 0.0547 0.0043 0.0012 0.0026
N-test 0.6156 0.6480 0.2421 0.0123 0.5070 0.1132

results fully legitimate the use of OLS and robust estimators with WNW matrix in complex real situations, such as
PV deployment.
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