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Abstract— In this work, we study the minimal time to steer a
given crowd to a desired configuration. The control is a vector
field, representing a perturbation of the crowd velocity, localized
on a fixed control set.
We characterize the minimal time for a discrete crowd model,
both for exact and approximate controllability. This leads to
an algorithm that computes the control and the minimal time.
We finally present a numerical simulation.

I. INTRODUCTION

In recent years, the study of systems describing a crowd of
interacting agents has drawn a great interest from the control
community. A better understanding of such interaction phe-
nomena can have a strong impact in several key applications,
such as road traffic and egress problems for pedestrians. For
few reviews about this topic, see e.g. [1], [2], [3], [4], [5],
[6], [7].

Beside the description of interactions, it is now relevant to
study problems of control of crowds, i.e. of controlling such
systems by acting on few agents, or on a small subset of the
configuration space. The nature of the control problem relies
on the model used to describe the crowd. In this article, we
focus on discrete models, in which the position of each agent
is clearly identified; the crowd dynamics is described by a
large dimensional ordinary differential equation, in which
couplings of terms represent interactions. For control of such
models, a large literature is available, see e.g. reviews [8],
[9], [10], as well as applications, both to pedestrian crowds
[11], [12] and to road traffic [13], [14].

The key aspect of such crowd models, is that agents
are considered identical, or indistinguishable. Thus, control
problems need to take into account that each configuration
is indeed defined modulo a permutation of agents. Since in
general the number of agents is large, it is then interesting to
find methods in which control goals (controllability, optimal
control) are reached without computing all the permutations.

In the present work, we study the following discrete
model, where the crowd is described by a vector with nd
components (n, d ∈ N∗) representing the positions of n
agents in the space Rd. The natural (uncontrolled) vector
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field is denoted by v : Rd → Rd, assumed Lipschitz
and uniformly bounded. We act on the vector field in a
fixed subdomain ω of the space, which will be a nonempty
open convex subset of Rd. The admissible controls are thus
functions of the form 1ωu : Rd×R+ → Rd which support in
the space variable is included in ω. The dynamics is given by
the following non autonomous ordinary differential equation{

ẋi(t) = v(xi(t)) + 1ω(xi(t))u(xi(t), t),
xi(0) = x0

i .
(1)

where X0 := {x0
1, ..., x

0
n} ⊂ Rd is the initial configuration

of the crowd. This representation with configurations can be
applied only if the different agents are considered identical or
interchangeable, as it is often the case for crowd models with
a large number of agents. The function v+1ωu represents the
velocity vector field acting on the crowd X := {x1, ..., xn}.
Thus we can modify this vector field only on a given
nonempty open subset ω of the space Rd. This kind of control
is one of the originality of our research. Such constraint is
highly non-trivial, since the control problem is non-linear.
At the best of our knowledge, minimal time problems in this
setting have not been studied.

Notice that (1) represents a specific crowd model, as the
velocity field v is given, and interactions between agents
are not taken into account. Nevertheless, it is necessary to
understand control properties for such simple equations as a
first step, before dealing with vector fields depending on the
crowd itself. Moreover, one can consider this problem as the
local perturbation of an interaction model along a reference
trajectory described by v.

The first question about control of (1) is to describe con-
trollability results, i.e. which configurations can be steered
from one to another. We solved this problem in [15], whose
main results are recalled in Section II.

When controllability is ensured, it is then interesting to
study minimal time problems. Indeed, from the theoretical
point of view, it is the first problem in which optimality
conditions can be naturally defined. More related to applica-
tions described above, minimal time problems play a crucial
role: egress problems can be described in this setting, while
traffic control is often described in terms of minimization of
(maximal or average) total travel time.

For discrete models, the dynamics can be written in
terms of finite-dimensional control systems. For this reason,
minimal time problems can sometimes be addressed with
classical (linear or non-linear) control theory, see e.g. [16],
[17], [18]. Our main aim here is to derive a method that
takes into account the indistinguishability of agents, without



passing through the computation of all possible permutations.
Classical methods are then not adapted. For this reason, our
main results presented in Section II will explicitly identify
fast algorithms to find minimizing permutations. Moreover,
these efficient methods will be also useful for numerical
methods, presented in Section IV.

REMARK 1.1: Another relevant approach for crowds
modeling is given by continuous models. There, the idea
is to represent the crowd by the spatial density of agents;
in this setting, the evolution of the density solves a partial
differential equation of transport type. Nonlocal terms (such
as convolutions) model the interactions between the agents.
For the few available results of control of such systems, see
e.g. [19], [20], [21], [15], [22].

This paper is organised as follows. In Sec. II, we give
the setting and our main results about the minimal time
for (exact and approximate) controllability for (1). These
results are proved in Sec. III. Finally, in Sec. IV we introduce
an algorithm to compute the infimum time for approximate
control of discrete models and give a numerical example.

II. MAIN RESULTS

To ensure the well-posedness of System (1), we search a
control 1ωu satisfying the following condition:

CONDITION 1 (Carathéodory condition): Let 1ωu be
such that for all t ∈ R, x 7→ 1ωu(x, t) is Lipschitz, for
all x ∈ Rd, t 7→ 1ωu(x, t) is measurable and there exists
M > 0 such that ‖1ωu‖∞ 6M .
In this setting, System (1) is well defined. Then, the flow can
be properly defined.

DEFINITION 1: We define the flow associated to a vector
field w : Rd×R→ Rd satisfying the Carathéodory condition
as the application (x0, t) 7→ Φwt (x0) such that, for all x0 ∈
Rd, t 7→ Φwt (x0) is the unique solution to{

ẋ(t) = w(x(t), t) for a.e. t > 0,
x(0) = x0.

(2)

One of the key properties of solutions to System (1) is that
they cannot separate or merge particles. Thus, the general
interesting settings for crowd models is the one of distinct
configurations as defined below.

DEFINITION 2: A configuration X = {x1, ..., xn} ⊂ Rd
is said to be disjoint if xi 6= xj for all i 6= j.
Since we deal with velocities v + 1ωu satisfying the
Carathéodory condition, by uniqueness of the solution to (2),
if X0 is a disjoint configuration, then the solution X(t) to
System (1) is also a disjoint configuration at each time t > 0.

From now on, we will assume that the following condition
is satisfied by initial and final configurations.

CONDITION 2 (Geometric condition): Let X0, X1 be
two disjoint configurations in Rd satisfying:

(i) For each i ∈ {1, . . . , n}, there exists t0 > 0 such that
Φvt0(x0

i ) ∈ ω.
(ii) For each i ∈ {1, . . . , n}, there exists t1 > 0 such that

Φv−t1(x1
i ) ∈ ω.

The Geometric Condition 2 means that the trajectory of
each particle crosses the control region forward in time and

the trajectories of each position of the target configuration
crosses the control region backward in time. It is the minimal
condition that we can expect to steer any initial condition
to any target. Indeed, we proved in [15] that one can
approximately steer an initial to a final configuration of the
System (1) if they satisfy the Geometric Condition 2.

Let ω be the closure of ω. In the sequel, we will define
the following functions for all x ∈ Rd and j ∈ {0, 1}:

t
0
(x) := inf{t ∈ R+ : Φvt (x) ∈ ω},

t
1
(x) := inf{t ∈ R+ : Φv−t(x) ∈ ω},

t0(x) := inf{t ∈ R+ : Φvt (x) ∈ ω},
t1(x) := inf{t ∈ R+ : Φv−t(x) ∈ ω}.

It is clear that it always holds tj(x) 6 tj(x). In some
situations, this inequality can be strict. For example, in Figure
1, it holds t1(x1

1) < t1(x1
1). Moreover, in this specific case

these functions can even be discontinous with respect to x.

x0
1
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1

ω

v

v
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1

Fig. 1. Example of difference between t1(x1
1) and t

1
(x1

1).

For simplicity, we use the notations

t
j
i := t

j
(xji ) and tji := tj(xji ), (3)

for i ∈ {1, ..., n} and j ∈ {0, 1}. We then define{
M∗e (X0, X1) := max{t0i , t1i : i = 1, ..., n},
M∗a (X0, X1) := max{t0i , t

1
i : i = 1, ..., n}.

We now state our first main result.
THEOREM 2.1: Let X0 := {x0

1, ..., x
0
n} and X1 :=

{x1
1, ..., x

1
n} be disjoint configurations satisfying the Geomet-

ric Condition 2. Arrange the sequences {t0i }i and {t1j}j to
be increasingly and decreasingly ordered, respectively. Then

Me(X
0, X1) := max

i∈{1,...,n}
|t0i + t1i | (4)

is the infimum time Te(X0, X1) for exact control of System
(1) in the following sense:
(i) For each T > Me(X

0, X1), System (1) is exactly
controllable from X0 to X1 at time T , i.e. there
exists a control 1ωu : Rd × R+ → Rd satisfying the
Carathéodory condition and steering X0 exactly to X1.

(ii) For each T ∈ (M∗e (X0, X1),Me(X
0, X1)], System (1)

is not exactly controllable from X0 to X1.
(iii) There exists (at most) a finite number of times T ∈

[0,M∗e (X0, X1)] for which System (1) is exactly con-
trollable from X0 to X1.

We give a proof of Theorem 2.1 in Section III.



We now turn to approximate controllability. We will use
the following distance between configurations.

DEFINITION 3: Consider X0 := {x0
1, ..., x

0
n} and X1 :=

{x1
1, ..., x

1
n} two configurations of Rd and define the distance

‖X0 −X1‖ := inf
σ∈Sn

(
n∑
i=1

1

n
|x0
i − x1

σ(i)|

)
,

where Sn is the set of permutations on {1, ..., n}.
This distance1 clearly takes into account the indistinguisha-
bility of agents, in the sense that its value does not depend
on the ordering of X0, X1.

We now state our second main result.
THEOREM 2.2: Let X0 := {x0

1, ..., x
0
n} and X1 :=

{x1
1, ..., x

1
n} be disjoint configurations satisfying the Geomet-

ric Condition 2. Arrange the sequences {t0i }i and {t1j}j to
be increasingly and decreasingly ordered, respectively. Then

Ma(X0, X1) := max
i∈{1,...,n}

|t0i + t
1
i |

is the infimum time Ta(X0, X1) for approximate controlla-
bility of System (1) in the following sense:

(i) For each T > Ma(X0, X1), System (1) is approxi-
mately controllable from X0 to X1 at time T , i.e. for
any ε > 0, there exists a control 1ωu satisfying the
Carathéodory condition such that the associated solution
X(t) to System (1) satisfies ‖X(T )−X1‖ < ε.

(ii) For each T ∈ (M∗a (X0, X1),Ma(X0, X1)], System (1)
is not approximately controllable from X0 to X1.

(iii) There exists (at most) a finite number of times T ∈
[0,M∗a (X0, X1)] for which System (1) is approximately
controllable from X0 to X1.

We give a proof of Theorem 2.2 in Section III.
In both theorems, controllability can occur at small times

but it is a very specific situation which is not entirely due to
the control. See Remark 3.1 for examples.

REMARK 2.1: It is well know that the notions of ap-
proximate and exact controllability are equivalent for finite
dimensional linear systems, when the control acts linearly,
see e.g. [24]. We remark that it is not the case for System
(1), which highlights the fact that we are dealing with a non-
linear control problem. The difference is indeed related to the
fact that for exact and approximate controllability, tangent
trajectories give different behaviors. For example, in Figure
1, if we denote by X0 := {x0

1} and X1 := {x1
1}, then it

holds Ma(X0, X1) < Me(X
0, X1) due to the presence of a

tangent trajectory. An approximate trajectory is represented
as dashed lines in the case T ∈ (Ma(X0, X1),Me(X

0, X1))
in Figure 1.

III. PROOFS OF MAIN RESULTS

In this section, we prove Theorem 2.1 and 2.2

1This distance coincides with the Wasserstein distance for empirical
measures (see [23, p. 5]).

A. Minimal time for exact controllability

We first obtain the following result:
PROPOSITION 1: Let X0 := {x0

1, ..., x
0
n} ⊂ Rd and

X1 := {x1
1, ..., x

1
n} ⊂ Rd be two disjoint configurations sat-

isfying the Geometric Condition 2. Consider the sequences
{t0i }i and {t1i }i given in (3). Then

M̃e(X
0, X1) := min

σ∈Sn
max

i∈{1,...,n}
|t0i + t1σ(i)| (5)

is the infimum time Te(X0, X1) to exactly control System
(1) in the sense of Theorem 2.1.

Proof: We first prove the result corresponding to Item
(i) of Theorem 2.1. Let T := M̃e(X

0, X1) + δ with δ > 0.
For all i ∈ {1, ..., n}, there exist s0

i ∈ (t0i , t
0
i + δ/3) and

s1
i ∈ (t1i , t

1
i + δ/3) such that y0

i := Φv
s0i

(x0
i ) ∈ ω and y1

i :=

Φv−s1i
(x1
i ) ∈ ω.

Item (i), Step 1: The goal is to build a flow with no
intersection of the trajectories xi(t), xj(t) with i 6= j. For
all i, j ∈ {1, ..., n}, we define the cost

Kij(y
0
i , s

0
i , y

1
j , s

1
j ) := ‖(y0

i , s
0
i )− (y1

j , T − s1
j )‖Rd+1

if s0
i < T − s1

j and Kij(y
0
i , s

0
i , y

1
j , s

1
j ) := ∞ otherwise.

Consider the minimization problem:

inf
π∈Bn

1

n

n∑
i,j=1

Kij(y
0
i , s

0
i , y

1
j , s

1
j )πij , (6)

where Bn is the set of the bistochastic n × n matrices, i.e.
the matrices π := (πij)16i,j6n satisfying, for all i, j ∈
{1, ..., n},

∑n
i=1 πij = 1,

∑n
j=1 πij = 1, πij > 0. The

infimum in (6) is finite since T > M̃e(X
0, X1). The

problem (6) is a linear minimization problem on the closed
convex set Bn. Hence, as a consequence of Krein-Milman’s
Theorem (see [25]), the functional (6) admits a minimum at
an extremal point of Bn, i.e. a permutation matrix. Let σ be a
permutation, for which the associated matrix minimizes (6).
Consider the straight trajectories yi(t) steering y0

i at time s0
i

to y1
σ(i) at time T − s1

σ(i), that are explicitly defined by

yi(t) :=
T − s1

σ(i) − t
T − s1

σ(i) − s
0
i

y0
i +

t− s0
i

T − s1
σ(i) − s

0
i

y1
σ(i). (7)

We now prove by contradiction that these trajectories have
no intersection: Assume that there exist i and j such that
the associated trajectories yi(t) and yj(t) intersect. If we
associate y0

i and y0
j to y0

σ(j) and y0
σ(i) respectively, i.e.

we consider the permutation σ ◦ Ti,j , where Ti,j is the
transposition between the ith and the jth elements, then the
associated cost (6) is strictly smaller than the cost associated
to σ (see Figure 2). This is in contradiction with the fact that
σ minimizes (6).

Item (i), Step 2: We now define a corresponding control
sending x0

i to x1
σ(i) for all i ∈ {1, ..., n}. Consider a

trajectory zi satisfying:

zi(t) :=


Φvt (x

0
i ) for all t ∈ (0, s0

i ),
yi(t) for all t ∈ (s0

i , T − s1
σ(i)),

Φvt−T (x1
i ) for all t ∈ (T − s1

σ(i), T ).



(y0
i , s

0
i )

(y0
j , s

0
j )

(y1
σ(j), T − s

1
σ(j))

(y1
σ(i), T − s

1
σ(i))

Fig. 2. An optimal permutation.

The trajectories zi have no intersection. Since ω is convex,
then, using the definition of the trajectory yi(t) in (7), the
points yi(t) belong to ω for all t ∈ (s0

i , T − s1
σ(i)). For all

i ∈ {1, ..., n}, choose ri, Ri satisfying 0 < ri < Ri and such
that for all t ∈ (s0

i , T − s1
σ(i)) it holds

Bri(zi(t)) ⊂ BRi
(zi(t)) ⊂ ω

and, for all t ∈ (0, T ) and i, j ∈ {1, ..., n}, it holds

BRi
(zi(t)) ∩BRj

(zj(t)) = ∅.

Such radii ri, Ri exist as a consequence of the fact that we
deal with a finite number of trajectories that do not cross.
The corresponding control can be chosen as a C∞ function
satisfying

u(x, t) :=



y1
σ(i) − y

0
i

T − s1
σ(i) − s

0
i

− v if t ∈ (s0
i , T − s1

σ(i))

and x ∈ Bri(zi(t)),

u(x, t) := 0
if t ∈ (s0

i , T − s1
σ(i))

and x 6∈ BRi(zi(t)),
u(x, t) := 0 if t 6∈ (s0

i , T − s1
σ(i)).

This control then satisfies the Carathéodory condition and
each i-th component of the associated solution to System
(1) is zi(t), thus u steers x0

i to x1
σ(i) in time T .

Item (ii): Assume that System (1) is exactly controllable at
a time T > M∗e (X0, X1), and consider σ the corresponding
permutation defined by xi(T ) = x1

σ(i). The idea of the proof
is that the trajectory steers x0

i to ω in time t0i , then it moves
inside ω for a small but positive time, then it steers a point
from ω to xiσ(i) in time t1σ(i), hence T > t0i + t1σ(i).

Fix an index i ∈ {1, ..., n}. First recall the definition of
t0i , t

1
σ(i) and observe that it holds both T > t0i and T >

t1σ(i). Then, the trajectory xi(t) satisfies2 xi(t) 6∈ ω for all
t ∈ (0, t0i ), as well as xi(t) 6∈ ω for all t ∈ (T − t1σ(i), T ).
Moreover, we prove that it exists τi ∈ (0, T ) for which it
holds xi(τi) ∈ ω. By contradiction, if such τi does not exist,
then the trajectory xi(t) never crosses the control region,
hence it coincides with Φvt (x

0
i ). But in this case, by definition

of t0i as the infimum of times such that Φvt (x
0
i ) ∈ ω and

recalling that t0i < T , there exists τi ∈ (t0i , T ) such that it
holds xi(τi) = Φvτi(x

0
i ) ∈ ω. Contradiction. Also observe

that ω is open, hence there exists εi such that xi(τ) ∈ ω for
all τ ∈ (τi − εi, τi + ε).

We merge the conditions xi(t) 6∈ ω for all t ∈ (0, t0i ) ∪
(T − t1σ(i), T ) with xi(τ) ∈ ω for all τ ∈ (τi − εi, τi + εi)

2These estimates hold even if x0
i ∈ ω, for which it holds t0i = 0.

with a given τi ∈ (0, T ). This implies that it holds t0i < τi <
T − t1σ(i), hence

T > t0i + t1σ(i).

Such estimate holds for any i ∈ {1, ..., n}. Thus, using
the definition of M̃e(X

0, X1), it holds T > M̃e(X
0, X1).

Item (iii): By definition of M∗e (X0, X1), there exists
l ∈ {0, 1} and m ∈ {1, ..., n} such that M∗e (X0, X1) = tlm.
We only study the case l = 0, since the case l = 1
can be recovered by reversing time. By definition of t0m,
the trajectory Φvt (x

0
m) satisfies Φvt (x

0
m) 6∈ ω for all t ∈

[0,M∗e (X0, X1)]. Then, for any choice of the control u
localized in ω, it holds Φv+1ωu

t (x0
m) = Φvt (x

0
m), i.e. the

choice of the control plays no role in the trajectory starting
from x0

m on the time interval t ∈ [0,M∗e (X0, X1)]. Observe
that it holds v(Φvt (x

0
m)) 6= 0 for all t ∈ [0,M∗e (X0, X1)],

due to the fact that the vector field is time-independent and
the trajectory Φvt (x

0
m) enters ω for some t > M∗e (X0, X1).

We now prove that the set of times t ∈ [0,M∗e (X0, X1)]
for which exact controllability holds is finite. A necessary
condition to have exact controllability at time t is that the
equation Φvt (x

0
m) = x1

i admits a solution for some time
t ∈ [0,M∗e (X0, X1)] and index i ∈ {1, ..., n}. Then, we
aim to prove that the set of times-indexes (t, i) solving such
equation is finite. By contradiction, assume to have an infinite
number of solutions (t, i). Since the set i ∈ {1, ..., n} is
finite, this implies that there exists an index I and an infinite
number of (distinct) times tk ∈ [0,M∗e (X0, X1)] such that
Φvtk(x0

m) = x1
I . By compactness of [0,M∗e (X0, X1)], there

exists a converging subsequence (that we do not relabel)
tk → t∗ ∈ [0,M∗e (X0, X1)]. Since v is continuous, we can
compute v(Φvt∗(x0

m)) by using the definition and taking the
subsequence tk → t∗, that gives

v(Φvt∗(x0
m)) = lim

k→∞

Φvtk(x0
m)− Φvt∗(x0

m)

tk − t∗
= 0.

This is in contradiction with the fact that v(Φvt (x
0
m)) 6= 0

for all t ∈ [0,M∗e (X0, X1)].
Formula (5) leads to the proof of Theorem 2.1.
Proof of Theorem 2.1. Consider M̃e(X

0, X1) given in
(5). By relabeling particles, we assume that the sequence
{t0i }i∈{1,...,n} is increasingly ordered. Let σ0 be a minimiz-
ing permutation in (5). We build recursively a sequence of
permutations {σ1, ..., σn} as follows: Let k1 be such that
t1σ0(k1) is a maximum of the set {t1σ0(1), ..., t

1
σ0(n)}. We

denote by σ1 := σ0 ◦ T1,k1 , where Ti,j is the transposition
between the i-th and the j-th elements. It holds

t0k1 + t1σ0(k1) > max{t01 + t1σ0(1), t
0
1 + t1σ1(1), t

0
k1 + t1σ1(k1)}.

Thus σ1 minimizes (5) too, since it holds

max
i∈{1,...,n}

{t0i + t1σ0(i)} > max
i∈{1,...,n}

{t0i + t1σ1(i)}.

We then build iteratively the permutation σk. The sequence
{t1σn(1), ..., t

1
σn(n)} is then decreasing and σn is a minimizing

permutation in (5). Thus M̃e(X
0, X1) = Me(X

0, X1). �
With Theorem 2.1, we give an explicit and simple expres-

sion of the infimum time for exact controllability of discrete



models. This result is also useful for numerical simulations
of Section IV.

B. Minimal time for approximate controllability

We now prove Theorem 2.2, which characterizes the
infimum time for approximate control of System (1).

Proof of Theorem 2.2. We first prove Item (i). As for
Theorem 2.1, we first prove that the minimal time is

M̃a(X0, X1) := min
σ∈Sn

max
i∈{1,...,n}

|t0i + t
1
σ(i)|.

Indeed, as in the proof of Theorem 2.1, the permutation
method implies M̃a(X0, X1) = Ma(X0, X1). This point
is left to the reader.

First assume that T > M̃a(X0, X1). Let ε > 0. For each
x1
i , we prove the existence of points y1

i satisfying

|y1
i − x1

i | 6 ε and yi := Φv−t1i
(y1
i ) ∈ ω. (8)

For each x1
i , observe that the Geometric Condition 2 implies

that either x1
i ∈ ω or that the trajectory enters ω backward

in time. In the first case, define y1
i := x1

i . In the second
case, remark that v(Φv−t(x

1
i )) is nonzero for a whole interval

t ∈ [0, t̃], with t̃ > t̄1i , and Φv−t̄1i
(x1
i ) ∈ ω, hence the flow

Φv−t̄1i
(·) is a diffeomorphism in a neighborhood of x1

i . Then,
there exists y1

i ∈ Rd such that (8) is satisfied.
We denote by Y 1 := {y1

1 , ..., y
1
n}. For all i ∈ {1, ..., n},

since yi ∈ ω, then t1(y1
i ) 6 t

1
i , hence

M̃e(X
0, Y 1) 6 M̃a(X0, X1) < T.

Proposition 1 implies that we can exactly steer X0 to Y 1

at time T with a control u satisfying the Carathéodory
condition. Denote by X(t) the solution to System (1) for
the initial condition X0 and the control u. It then holds

‖X1 −X(T )‖ = ‖X1 − Y 1‖ 6
n∑
i=1

1

n
|y1
i − x1

i | 6 ε.

We now prove Item (ii). Consider a control time T >
M∗a (X0, X1) at which System (1) is approximately control-
lable. We aim to prove that it satisfies T > Ma(X0, X1).
For each k ∈ N∗, there exists a control uk satisfying the
Carathéodory condition such that the corresponding solution
Xk(t) to System (1) satisfies

‖X1 −Xk(T )‖ 6 1/k. (9)

We denote by Y 1
k := {y1

k,1, ..., y
1
k,n} the configuration

defined by y1
k,i := Xk,i(T ), where Xk,i is the i-th component

of Xk. Since X0 is disjoint and uk satisfies the Carathéodory
condition, then Y 1

k is disjoint too. We now prove that it holds

T > M∗e (X0, Y 1
k ). (10)

Since T > M∗a (X0, X1), then (10) is equivalent to T >
t1i (y

1
k,i) for all i ∈ {1, ..., n}. By contradiction, assume that

there exists j ∈ {1, . . . , n} such that t1(y1
k,j) > T . Assume

that t1(y1
k,j) > T , the case t1(y1

k,j) = T being similar since
ω is open. Then for any t ∈ [0, T ] it holds Φv−t(y

1
k,j) 6∈ ω.

Thus, the localized control does not act on the trajectory, i.e.
for each t ∈ [0, T ] it holds Φv−t(y

1
k,j) = Φv+1ωuk

−t (y1
k,j).

Since y1
k,j = Φv+1ωuk

T (x0
j ) = ΦvT (x0

j ), then Φvt (x
0
j ) 6∈

ω for all t ∈ [0, T ]. This is a contradiction with the fact
that t0j 6 M∗a (X0, X1) < T . Thus (10) holds. Since Y 1

k =
Xk(T ), then Proposition 1 implies that

T > M̃e(X
0, Y 1

k ). (11)

For each control uk, denote by σk the permutation for which
it holds y1

k,i = Φv+1ωuk

T (x0
σk(i)). Up to extract a subse-

quence, for all k large enough, σk is equal to a permutation
σ. Inequality (9) implies that for all i ∈ {1, ..., n} it holds

y1
k,i −→

k→∞
x1
σ(i). (12)

Since t1(y1
k,i) 6 M̃e(X

0, Y 1
k ) < T , up to a subsequence, for

a si > 0, it holds

t1(y1
k,i) −→

k→∞
si. (13)

Using (12), (13) and the continuity of the flow, it holds

|Φv−t1(y1k,i)
(y1
k,i)− Φv−si(x

1
σ(i))| −→k→∞ 0.

The fact that Φv−t1(y1k,i)
(y1
k,i) ∈ ω for each i = 1, . . . , n

leads to Φv−si(x
1
σ(i)) ∈ ω. Thus t1(x1

σ(i)) 6 lim
k→∞

t1(y1
k,i).

Denoting δ := (T − M̃e(X
0, X1))/2, using (11), we obtain

M̃a(X0, X1) 6 maxi∈{1,...,n} |t0i + t
1
σ(i)|

6 maxi∈{1,...,n} |t0i + t1(y1
k,σ(i))|+ δ

= M̃e(X
0, Y 1

k ) + δ < T.

We finally prove Item (iii) of Theorem 2.2. Let T ∈
(0,M∗a (X0, X1)) be such that System (1) is approximately
controllable. For any ε > 0, there exists uε such that the
associated trajectory to System (1) satisfies

‖Xε(T )−X1‖ < ε. (14)

There exists j ∈ {1, . . . , n} such that it holds t0(x0
j ) =

M∗a (X0, X1) > T or t1(x1
j ) = M∗a (X0, X1) > T . Assume

that t0(x0
j ) = M∗a (X0, X1) > T , the case t

1
(x1
j ) =

M∗a (X0, X1) being similar. Define xε,j(t) := Φv+1ωuε
t (x0

j ).
Inequality (14) implies that it exists k ∈ {1, . . . , n} such that

|xε,j(T )− x1
kε | < ε. (15)

As t0(x0
j ) > T , the trajectory Φvt (x

0
j ) does not cross the

control set ω for t ∈ [0, T ), hence

xε,j(T ) = Φv+1ωuε

T (x0
j ) = ΦvT (x0

j )

does not depend on ε. Define R := 1
2 minp,q |x1

p − x1
q|, that

is strictly positive since X1 is disjoint. For each ε < R,
estimate (15) gives kε = k independent on ε and xε,j(T ) =
Φvt (x

0
j ) = x1

k. Use now the proof of Item (iii) in Proposition
1 to prove that the equation Φvt (x

0
j ) = x1

k admits a finite
number of solutions (t, k) with t ∈ [0, t0(x0

j )] and k ∈
{1, . . . , n}. �

REMARK 3.1: We illustrate Item (iii) with two examples.



• Figure 3 (left). The vector field v is (1, 0), thus un-
controlled trajectories are right translations. The time
M∗e (X0, X1) at which we can act on the particles and
the minimal time Me(X

0, X1) are respectively equal
to 1 and 2. We observe that System (1) is neither
exactly controllable nor approximately controllable on
the whole interval [0,M∗e (X0, X1)).

• Figure 3 (right). The vector field v is (−y, x), thus
uncontrolled trajectories are rotations with constant an-
gular velocity. The time M∗e (X0, X1) at which we can
act on the particles and the minimal time Me(X

0, X1)
are respectively equal to 3π/4 and π. We remark that
System (1) is exactly controllable, then approximately
controllable, at time T = π/2 ∈ [0,M∗e (X0, X1)).

x0
1 x1

1

ω

v

1 x1
1

x0
1

ω

v

Fig. 3. Examples in the case T ∈ (0,M∗
e (X

0, X1)).

IV. ALGORITHM AND NUMERICAL SIMULATIONS

We consider a crowd described by a discrete configuration
X(t) whose evolution is given by System (1). We present the
following algorithm to compute numerically the time and
the control realizing the exact controllability between two
configurations satisfying the Geometric Condition 2.

Algorithm 1 Minimal time problem for exact controllability
Step 1: Computation of the minimal time (4).
Step 2: Computation of an optimal permutation to steer X0

to X1 minimizing (6).
Step 3: Computation of the control u and the solution X to
System (1) on (0, T ).

The analysis and convergence of this method for continu-
ous crowds will be studied in the forthcoming paper [22].

We now give a numerical example in dimension 2, for
which we solve the minimal time problem with Algorithm 1.
Consider v := (1, 0), the control region ω represented by the
rectangle in Figure 4 and the initial and final configurations
X0, X1 given in the first and fourth pictures of Figure 4.
We control the crowd at time T = Te(X

0, X1) + δ, with
δ = 0.1.
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