STUDIES III
 HEALH TECHMOLOGY AND INFOMMAITCS
 287

Transforming our World through Universal Design for Human Development
 Proceedings of the Sixth International Conference on Universal Design (UD2022)

Editors: Ilaria Garofolo
Giulia Bencini
Alberto Arenghi

IOS Press

An environment, or any building product or service in it, should ideally be designed to meet the needs of all those who wish to use it. Universal Design is the design and composition of environments, products, and services so that they can be accessed, understood and used to the greatest extent possible by all people, regardless of their age, size, ability or disability. It creates products, services and environments that meet people's needs. In short, Universal Design is good design.

This book presents the proceedings of UD2022, the 6th International Conference on Universal Design, held from 7-9 September 2022 in Brescia, Italy. The conference is targeted at professionals and academics interested in the theme of universal design as related to the built environment and the wellbeing of users, but also covers mobility and urban environments, knowledge, and information transfer, bringing together research knowledge and best practice from all over the world. The book contains 72 papers from 13 countries, grouped into 8 sections and covering topics including the design of inclusive natural environments and urban spaces, communities, neighborhoods and cities; housing; healthcare; mobility and transport systems; and universallydesigned learning environments, work places, cultural and recreational spaces. One section is devoted to universal design and cultural heritage, which had a particular focus at this edition of the conference.

The book reflects the professional and disciplinary diversity represented in the UD movement, and will be of interest to all those whose work involves inclusive design.

ISBN 978-I-64368-304-I (print) ISBN 978-I-64368-305-8 (online) ISSN 0926-9630 (print)
ISSN I879-8365 (online)

TRANSFORMING OUR WORLD THROUGH UNIVERSAL DESIGN FOR HUMAN DEVELOPMENT

Studies in Health Technology and Informatics

International health informatics is driven by developments in biomedical technologies and medical informatics research that are advancing in parallel and form one integrated world of information and communication media and result in massive amounts of health data. These components include genomics and precision medicine, machine learning, translational informatics, intelligent systems for clinicians and patients, mobile health applications, datadriven telecommunication and rehabilitative technology, sensors, intelligent home technology, EHR and patient-controlled data, and Internet of Things.

Studies in Health Technology and Informatics (HTI) series was started in 1990 in collaboration with EU programmes that preceded the Horizon 2020 to promote biomedical and health informatics research. It has developed into a highly visible global platform for the dissemination of original research in this field, containing more than 250 volumes of high-quality works from all over the world.

The international Editorial Board selects publications with relevance and quality for the field. All contributions to the volumes in the series are peer reviewed.

Volumes in the HTI series are submitted for indexing by MEDLINE/PubMed; Web of Science: Conference Proceedings Citation Index - Science (CPCI-S) and Book Citation Index Science (BKCI-S); Google Scholar; Scopus; EMCare.

Series Editors:
B. Blobel, O. Bodenreider, E. Borycki, M. Braunstein, C. Bühler, J.P. Christensen, R. Cooper, R. Cornet, J. Dewen, O. Le Dour, P.C. Dykes, A. Famili, M. González-Sancho, E.J.S. Hovenga, J.W. Jutai, Z. Kolitsi, C.U. Lehmann, J. Mantas, V. Maojo, A. Moen, J.F.M. Molenbroek, G. de Moor, M.A. Musen, P.F. Niederer, C. Nøhr, A. Pedotti, N. Peek, O. Rienhoff, G. Riva, W. Rouse, K. Saranto, M.J. Scherer, S. Schürer, E.R. Siegel, C. Safran, N. Sarkar, T. Solomonides, E. Tam, J. Tenenbaum, B. Wiederhold, P. Wilson and L.H.W. van der Woude

Volume 297

Recently published in this series
Vol. 296 R. Röhrig, N. Grabe, V.S. Hoffmann, U. Hübner, J. König, U. Sax, B. Schreiweis and M. Sedlmayr (Eds.), German Medical Data Sciences 2022 - Future Medicine: More Precise, More Integrative, More Sustainable! - Proceedings of the Joint Conference of the 67th Annual Meeting of the German Association of Medical Informatics, Biometry, and Epidemiology e.V. (gmds) and the 14th Annual Meeting of the TMF Technology, Methods, and Infrastructure for Networked Medical Research e.V. 2022 online in Kiel, Germany
Vol. 295 J. Mantas, P. Gallos, E. Zoulias, A. Hasman, M.S. Househ, M. Diomidous, J. Liaskos and M. Charalampidou (Eds.), Advances in Informatics, Management and Technology in Healthcare

Transforming our World through Universal Design for Human Development

Proceedings of the Sixth International Conference on Universal Design (UD2022)

Edited by
Ilaria Garofolo
University of Trieste, Italy
Giulia Bencini
Ca' Foscari University of Venice, Italy
and
Alberto Arenghi
University of Brescia, Italy

(C) 2022 The authors and IOS Press.

This book is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

ISBN 978-1-64368-304-1 (print)
ISBN 978-1-64368-305-8 (online)
Library of Congress Control Number: 2022943405
doi: 10.3233/SHTI297

The image on the front cover represents the Winged Victory of Brescia, a bronze statue from the first century CE. The statue is preserved in the Roman Archaeological Park in Brescia.

Publisher

IOS Press BV
Nieuwe Hemweg 6B
1013 BG Amsterdam
Netherlands
fax: +31 206870019
e-mail: order@iospress.nl

For book sales in the USA and Canada:
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel.: +1 7038306300
Fax: +1 7038302300
sales@iospress.com

LEGAL NOTICE

The publisher is not responsible for the use which might be made of the following information.
PRINTED IN THE NETHERLANDS

Preface

"All over the world, people are struggling for a life that is fully human, a life worthy of human dignity. Countries and states are often focused on economic growth alone, but their people, meanwhile, are striving for something different: they want meaningful human lives." (Martha C. Nussbaum, 2012. Creating Capabilities, p. 1, Cambridge, Massachusetts and London, UK, Harvard University Press)

From its first edition in 2012, the journey of the international conference on Universal Design has been the story of an expanding intellectual and practical movement. The aim of this movement is to put into practice the aspirations and goals of human-centred approaches to sustainable development founded on human rights, human development and equality for all, such as those encoded in the United Nations Sustainable Development Goals and the Convention on the rights of Persons with Disabilities (UNCRPD).

After the first meeting in Norway (Oslo, 2012), which was organised by several enlightened governmental bodies in the Scandinavian region as a forum for the exchange of views and sharing of good practice in Universal Design, the second edition in Lund in 2014 saw the entry of academia, with wide participation from across academic disciplines, setting the stage for UD practitioners, researchers and educators to connect directly and to share ideas, research and practice.

The role of academic institutions in organising the UD conference (York, 2016, Dublin, 2018 and Helsinki, 2021) has persisted across successive editions, strengthening over time, as universities have increasingly recognised and taken on board their responsibility as primary actors in working towards societies that are founded on equity, justice and sustainable development for all human beings through their research, educational and outreach activities.

The 2022 edition, held in the historic town of Brescia, Italy, marks another landmark in the journey of the UD movement, as it crosses the alps to be hosted in southern Europe for the first time. Three Italian Universities - the Universities of Brescia, Trieste, and Ca ' Foscari University of Venice - have joined forces to make this edition possible, opening up a space for conversations between researchers, educators and policy-makers in a truly multi-disciplinary vision for UD.

The title: Transforming our World for Human Development is intentionally aimed at realising broad sustainable development goals from a person-centred UD perspective by engaging delegates in a conversation across cultural, geographical, and disciplinary boundaries about what sustainable development really means. This was eloquently put by our dear colleague and friend Elio Borgonovi:
"There is much talk about renewable energies, resources and circular economies. Most of the time, however, we forget that human beings, with their characteristics and capabilities, provide the most precious renewable energy of all. Human capabilities develop with age and grow through education and experience. People flourish when they are given the chance to exercise their potential. This potential is exercised in social and natural environments when human beings can contribute
with their physical, intellectual, rational and emotional participation, by people, with people and for people." (Address delivered at the University of Brescia, December 17th, 2020).

The sessions of the 2022 edition are characterised by their multi-disciplinary and multi-perspective nature, with sessions aimed at the design of inclusive natural environments and urban spaces, communities, neighbourhoods and cities, housing, healthcare, and educational facilities, mobility and transport systems, moving on to universally-designed learning environments, work places, cultural and recreational spaces. Contributions come from 13 different countries and various continents (Africa, Australia, Central America, East Asia, Europe, North America, South Asia) once again demonstrating that this is a growing international movement.

Our special thematic session is dedicated to Universal Design and Cultural Heritage. We believe that cultural heritage is part of what makes our lives human and meaningful. Providing full access for all human beings to cultural heritage combines two fundamental values crucial for human development and flourishing: cultural heritage provides each and every person with the possibility to engage meaningfully with their cultural and historical past, and at the same time it develops the awareness in each human being of the value of conserving the past so that we can better live in and understand the present.

A distinctive characteristic of the UD conference is the coming together of academic, governmental and professional communities under one roof. Our wish and invitation for the conference is for openness to others and to perspectives and experiences that may be different from our own, letting go of professional and disciplinary barriers, engaging with each other with empathy and curiosity. The experience of being so long deprived of face-to-face interaction due to the Covid-19 pandemic has made everyone more aware of the value of coming together during live conferences, in formal and informal ways.

The professional and disciplinary diversity represented in the UD movement is what allows us to transcend current existing separations between communities of knowledge and communities of practice, as well as existing separations between academic disciplines. Only when knowledge, practice and research from different disciplines are allowed to engage meaningfully and to feed into each other in a virtuous circle, can the power of ideas and actions become truly transformational.

Brescia, September 2022
Ilaria Garofolo, University of Trieste
Giulia Bencini, Ca' Foscari University of Venice
Alberto Arenghi, University of Brescia

About the Conference

Conference Co-chairs

Alberto Arenghi	Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia
Giulia Bencini	Department of Linguistics and Comparative Cultural Studies, Ca' Foscari University of Venice Ilaria Garofolo
	Department of Engineering and Architecture, University of Trieste

Conference Organisation

Barbara Rita Barricelli	University of Brescia
Mariachiara Bonetti	University of Brescia
Elena Bortolotti	University of Trieste
Elisa Cacciaguerra	University of Trieste
Barbara Chiarelli	University of Trieste
Carlotta Coccoli	University of Brescia
Simone Fanti	RCS MediaGroup, Milan
Daniela Fogli	University of Brescia
Michaela Mae Vann	Ca' Foscari University of Venice
Martina Pucci	Ca' Foscari University of Venice

Scientific Committee

Francesc Aragall	President Foundation Design for All, Barcelona, Spain
Giuseppe Arconzo	Associate Professor of Constitutional Law, University of Milan, Italy
Alberto Arenghi	Associate Professor of Building Technology, University of Brescia, Italy
Luca Baraldi	Head of Corporate Identity \& Public Affairs Ammagamma, Modena, Italy
Giulia Bencini	Associate Professor of English Language and Linguistics, Ca' Foscari University of Venice, Italy
Elio Borgonovi	Senior Professor of Economics and Management of Public Administration, Bocconi University, Milan, Italy
Jane Bringolf	Chair of Centre for Universal Design Australia, Sydney Anna Cardinaletti Professor of Linguistics, Ca' Foscari University of Venice,
	Italy

Tiziano Cattaneo	Researcher and Professor of Architectural and Urban Design, University of Pavia, Italy and Tongji University, Shanghai, China
Carlotta Coccoli	Associate Professor of Architectural Restoration, University of Brescia, Italy
Gerald Craddock	Chief Officer of Centre for Excellence in Universal Design - National Disability Authority, Dublin, Ireland
Stefano Della Torre	Professor of Architectural Restoration, President of Società Italiana per il Restauro dell'Architettura, Polytechnic University of Milan, Italy
Giuseppe Di Bucchianico	President EIDD - Design for All Europe, Italy
Oana Diaconescu	Associate Professor of Architectural and Urban Design, Ion Mincu University of Architecture and Urbanism, Bucharest, Romania
Onny Eikhaug	Former President EIDD - Design for All Europe, member of the Board IAUD, Chair of Selection Committee for the IAUD International Design Award Founder Innovation for All AS, Norway
Simone Fanti	Journalist RCS MediaGroup, Milan, Italy
Fabio Ferrucci	Professor of Sociology of Culture, University of Molise, Campobasso, Italy
Alenka Fikfak	Associate Professor, Head of the Chair of Urbanism, University of Ljubljana, Slovenia
Daniela Fogli	Professor of Computer Science and Engineering, University of Brescia, Italy
Ilaria Garofolo	Professor of Building Technology, University of Trieste, Italy
Emanuele Giorgi	Professor of Architectural and Urban Design, Tecnologico de Monterrey, Mexico
Per-Olof Hedvall	Certec Director, Lund University, Sweden
Pete Kercher	Ambassador EIDD - Design for All Europe, Italy
Antonio Laurìa	Professor of Technology of Architecture, Head of the Interdepartmental Laboratory Florence Accessibility Lab, University of Florence, Italy
Inger Marie Lid	Professor of Rehabilitation and Public Health, VID Specialized University, Oslo, Norway
Elena Marchigiani	Associate Professor of Urban Planning, University of Trieste, Italy
Iva Mrak	Head of the Department for Transportation Engineering, Construction Management and Technology and Architecture, Representative at EIDD - Design for All Europe, University of Rijeka, Croatia

\(\left.$$
\begin{array}{ll}\text { Laura Nota } & \begin{array}{l}\text { Professor in Psychology of Inclusion and Psychology of } \\
\text { Career Counseling, University of Padova, Italy } \\
\text { Professor of Experimental Pedagogy, University of Trieste, } \\
\text { Gisella Paoletti }\end{array} \\
\text { Italy } \\
\text { Marisa Rosalba Pavone } & \begin{array}{l}\text { Professor of Special Education and Didactics, University of } \\
\text { Torino, Italy } \\
\text { Professor of Computer Science, Ca' Foscari University of } \\
\text { Venice, Italy }\end{array} \\
\text { Marcello Pelillo } & \begin{array}{l}\text { Professor Emerita of Human Computer Interaction, } \\
\text { Helen Petrie }\end{array}
$$

University of York, UK\end{array}\right]\)| Associate Professor of Town and Regional Planning, |
| :--- |
| Giovanni Ramponi Pezzagno |
| University of Brescia, Italy |
| Camilla Ryhl |
| Orofessor of Electronics, University of Trieste, Italy |
| Research Director, BEVICA Fonden, Denmark |
| Ira Verma | | Senior Adviser for Cultural Heritage, Church of Norway, |
| :--- |
| Oslo |\quad| Researcher in Architecture, Aalto University, Helsinki, |
| :--- |

This page intentionally left blank

Contents

Preface v
Ilaria Garofolo, Giulia Bencini and Alberto Arenghi
About the Conference vii
Section 1. Ethical and Philosophical Perspectives in Universal Design
The Emancipatory Design Manifesto: Let's Suppose That Disability Does Not Exist 3
Jon Dag Rasmussen and Anne Britt Torkildsby
Understanding Person-Environment Relationships as Criteria to Support the Operationalization of Universal Designing 12
Oskar Jonsson
State of Art and Perspectives of Universal Design: The Libyan Approach 20
Ahmed El Rida Al Sharif
'Frontrunners" Understanding of Universal Design in Architecture 28
Sidse Grangaard and Victoria Linn Lygum
User Insights for Better and More Inclusive Online Public Services: A Survey Study 36
Till Halbach, Kristin Skeide Fuglerud and Mikael Snaprud
Methodologies for the Design of University Teaching Spaces in Covid/19 Regime.A BIM Oriented Approach, Defined for the Case Study of the Buildings of theDepartment of Architecture of the University of Florence (DiDA)44Luca Marzi and Shirin Amini
Understanding the Quality of Life of Indian Elderly During COVID-19 Pandemic from Universal Design Perspective 53
Iram and Gaurav Raheja
Public Space Accessibility in Vulnerable Areas in Post-Covid Times 61
Deborah Guadalupe Garay Gutiérrez, Emanuele Giorgi
and Virginia del Socorro Aceves Tarango
The Missing Voices of Disabled People 69
Masashi Kajita and Emil Ballegaard
Making Research More Inclusive: Is Universal Design of Research the Answer? 77
Gerd Berget and Birgit Kvikne
Towards 3rd Generation Universal Design: Exploring Nonclusive Design 85
Per-Olof Hedvall, Margaret Price, Johnna Keller and Stina Ericsson
Adaptive Refurbishment for Aging in Place: Design Scenarios of Case Studies in Turin, Italy 93
Elena Montacchini, Silvia Tedesco and Lorenzo Savio

Section 2. System and Standards for Universal Design

Can I Get There? Can I Play? Can I Stay? Creating an Inclusive Playspace Guide in Australia 103
Jane Bringolf and Phillippa Carnemolla
Accessible-to-All Cities. A Project of Networking Italian Experiences to Raise Awareness and Promote Universal Design 111
Francesco Alberti and Barbara Chiarelli
Universal Design in Exhibit 120
Mark Trieglaff
360-Degree Films for Cognitive Inclusion at Workplaces 127
Håkan Eftring and Sara Kjellstrand
Mapping Accessibility in Norway - A Tool and Method to Register and Survey the Status of Accessibility in Urban Areas and Recreational Areas 135
Sven Michaelis and Kathrin Bögelsack
Personalised Solutions for Universal Goals. A Home Adaptation Project for Disabled People in Italy 143
Antonio Laurìa, Paolo Costa and Leonardo Chiesi
Universal Design in Housing in Australia: An Example of People Power 151
Margaret Ward and Jane Bringolf
Housing Development for All? Learnings from the Ars Longa Case 159
Antti Pirinen
Perspectives on Accessibility and Its Users Amongst Practicing Danish Landscape Architects 167
Marcus Tang Merit and Marie Christoffersen Gramkow
Section 3. Universal Design for Inclusive Communities and Urban Spaces
Systemic Approach to Universal Design of Urban Spaces - Case Study of Trbovlje, Slovenia 177
Kristijan Lavtižar, Janez Grom, Neli Zajc and Alenka Fikfak
SMARTAGING in Venice. Toward a Definition of Age-Friendly Neighbourhood 185
Rosaria Revellini
Aging Neighborhood and Social Inclusion - A Case Study 193 Ira Verma
«Progetto di Vita» and Universal Design for Persons with Disabilities 201
Cristiana Perego, Ilaria Oberti and Angela Silvia Pavesi
Communities, Sport, Inclusion. Strategies for Parish Complexes - Social Reactivation Through Sport Practice Promotion 209
Francesca Daprà, Erica Isa Mosca, Marco Gola, Andrea Rebecchi, Maddalena Buffoli, Marika Fior, Maria Pilar Vettori and Stefano Capolongo
Rethinking Play Environments for Social Inclusion in Our Communities 218
Michela Dalpra
A "Best Practice" for Inclusive Art Cities: The Case Study of the I-Access Project 226
Aldo R.D. Accardi and Renata Prescia
Everyone Inside. Transformation of an Inaccessible Heterotopy. The Case of Buoncammino's Prison 235
Francesca Musanti
Section 4. Urban Scale, Mobility and Service Planning in a Universal Design Perspective
Policies and Processes for Accessibility from a UD Perspective: The Integrated Approach Supported by the Friuli Venezia Giulia Region (IT) 247
Amanda Burelli and Consuelo Simone
Beyond the Norm, the PEBA to Live in Udine 255
Christina Conti, Silvia Cioci and Teresa Sambrotta
The City of Lecce (ITA) Accessibility Plan. The Innovative Experience of the Municipal Accessibility Lab 263
Francesca Raimondi, Monica Bercigli, Dora Uricchio and Giuseppe Gaballo
Plans for the Removal of Architectural Barriers (PEBAs) from a UD Perspective. An Interdisciplinary Process in the Italian Region Friuli Venezia Giulia 271
Elena Marchigiani, Barbara Chiarelli, Valentina Novak and Andrea Peraz
Improving Accessibility and Usability in the Built Environment. Case Study: Guide Lines by the Lombardy Region, Italy 280
Isabella Tiziana Steffan, Armando De Salvatore and Fulvio Matone
The Level of Inclusiveness of Current 15-Minute City Models. A Qualitative Analysis on How Far City of Proximity Strategies and Design for All Are Merging 288
Alba Ramírez Saiz, Delfín Jiménez Martín, Patxi Lamíquiz and Andrea Alonso
Inclusive Path Through Pavia: A Study to Link the Langobardic Heritage 296
Alessandro Greco, Valentina Giacometti and Elisa Bifano
Metropolitan MaaS and DRT Schemes: Are They Paving the Way Towards a More Inclusive and Resilient Urban Environment? 304
Ilaria Delponte and Valentina Costa
Section 5. Universal Design for Healthcare
Interpreting Inclusion for Sanitation Perspectives from India: A Contextual Approach to Universal Design 315
Divyang Purkayastha and Gaurav Raheja
Healthcare Facilities and Dementia Development of a Framework to Assess Design Quality323Silvia Mangili and Stefano Capolongo
Designing Hospitals Through the Lens of Universal Design. An Evaluation Tool to Enhance Inclusive Healthcare Facilities 331
Erica Isa Mosca, Jonathan White, Edward Steinfeld and Stefano Capolongo
Developing Innovative Solutions for Universal Design in Healthcare and Other Sectors 340
Jonathan White and Erica Isa Mosca
Home-Based Primary Care: Adaptability Criteria for the Bedroom Layout and the Furnitures/Technological Equipments 348
Cristiana Cellucci
Section 6. Universal Design in Products and Information and Communication Technologies
Developed an Innovative Handbike Fork Made of Composite Material 359
Luigi Solazzi, Giuseppe Schinetti and Riccardo Adamini
A Pattern Language for Inclusive Design: A Set of Patterns for Designing Reusable Accessible Solutions 367
Stefano Valtolina and Alessandro Vivian Sisto
Unidirectional Tactile Paving: Circulation for the Visually Impaired 375
Juan Fernández González and Ankit Gongal
Toward an Inclusive and Independent Fruition of Architecture: The Use of Scale Models and Augmented Reality 383
Federico Cavalieri, Marianna Rotilio and Pierluigi De Berardinis
Towards eXtended Universal Design 391
Joschua Thomas Simon-Liedtke and Rigmor Baraas
Technology Use and Familiarity as an Indicator of Its Adoption in Museum by People with Intellectual Disabilities 400
Marilina Mastrogiuseppe, Leandro Soares Guedes, Monica Landoni, Stefania Span and Elena Bortolotti
A Multisensorial Storytelling Design Strategy to Build Empathy and a Culture of Inclusion 408
Janice Rieger and Marianella Chamorro-Koc
Section 7. Universal Design and Cultural Heritage
Does Pure Contemplation Belong to Architecture? The Denied Ramps at the Church of San Salvatore in the Santa Giulia Museum in Brescia 419
Alberto Arenghi and Carlotta Coccoli
World Heritage-Universal Heritage. The Commitment of Brescia Museums Foundation and Brescia Council to Enhance Museums and Public Archaeological Areas 427
Francesca Morandini
How Can We Ensure Accessibility of Cultural Heritage? Toward Better Utilization of Existing Assets in Japanese Context 435
Satoshi Kose
The Accessibility of Cultural Heritage. A New Perspective Between Relational Gaze and the Philosophy of Gesture 443
Fabio Ferrucci
Outside, Around, Inside. New Paths to Discover San Michele Castle (Cagliari, Sardinia) 451
Raffaele Argiolas, Elisabetta Mannai and Valentina Pintus
Universal Design and Interoperable Digital Platforms Between Conservation and New Fruition Opportunities. The Case Study of Arianna's Domus in Pompeii 459
Renata Picone
NEAR PROJECT - Accessibility Plan for the Monumental Complex of the Opera di S. Maria del Fiore in Florence. Accessibility as an Element of Social 467
Luigi Vessella
Values-Based Conservation in Practice - Accessibility at Akershus Castle 475
Christian Ebbesen and Marianne Brenna
Usability of Visiting Routes in Heritage: The Case Study of Mercati di Traiano 483
Luigi Biocca, Teresa Villani and Federica Romagnoli
The Economic Impact of Universal Design on Cultural Heritage Contribution to SDGs: Evidence from Italian Museums 491
Renato Camodeca, Alex Almici and M. Cristina Vannini
Urban Accessibility in World Heritage Cities. Accessibility Considerations in Pedestrian Routes in Historic City Centres 499
Delfin Jiménez Martín, Alba Ramirez Saiz and Miguel Angel Ajuriaguerra Escudero
Improving the Accessibility of Cultural Sites During Pandemic Through Microclimate Control. The Case of CapsulART Applied to the MANN Museum in Naples 507
Marco Pretelli, Leila Signorelli and Maria Antonietta De Vivo
Innovative Accesibility Data Inventory Tools for Urban Environments in Historic Sites 515
Daniele Treccani and Sebastiano Marconcini

Section 8. Universal Design to Create Inclusive Educational Environments

Universal Design in Primary Schools 525
Karine Denizou
Towards a More Inclusive Learning Environment: The Importance of Providing Captions That Are Suited to Learners' Language Proficiency in the UDL Classroom 533
Shamira Venturini, Michaela Mae Vann, Martina Pucci and Giulia M. L. Bencini
Universal Design for Learning at University: Technologies, Blended Learning and Teaching Methods 541
Federica Baroni and Marco Lazzari
The Future of eXtended Reality in Primary and Secondary Education 549
Joschua Thomas Simon-Liedtke and Rigmor Baraas
Challenges in Implementing Universal Design of ICT Among Teachers in Higher Education in Norway 557
Adil Hussain and Norun Christine Sanderson
Accessible University: Architectural Design for Special Needs Users Integration. Design Proposals for Politecnico di Torino 565
Angela Lacirignola, Cristina Azzolino and Lorenzo Savio
Higher Education and Universal Design in Tanzania. A New Model of Inclusion and Sustainable Development 573
Mariachiara Bonetti and Martin Noel
UNIVERCITY. The University as a Metaphor for the City. Processes, Methods, and Tools for Contemporary Design 581
Cognigni Marta, Faroldi Emilio and Vettori Maria Pilar
Accessibility Improvement of Public Schools Through User Involvement in JAPAN 589
Maiko Sugawara
Evaluation Methodology for Inclusive Schools Environments. A Comparative Analysis Towards Goals and Strategies for Urban Design 597
Maddalena Buffoli, Marika Fior, Federica Delogu, Chiara Donato and Erica Isa Mosca
Subject Index 605
Author Index 609

Home-Based Primary Care: Adaptability Criteria for the Bedroom Layout and the Furnitures/Technological Equipments

Cristiana CELLUCCI ${ }^{\text {a, }}$,
${ }^{\text {a }}$ Department of Architecture and Arts. Iuav, University of Venice, Italy

Abstract

Within the past decade, advances in medical technology, the desires and complex care needs of an ageing population, and innovative care delivery models have initiated a shift from providing care in hospitals to outpatient settings. And more recently, the acceleration and amplification of these factors is pushing healthcare options even further from the traditional inpatient and outpatient settings towards acute and subacute care in the home. This has led the medical community to look toward providing more tools and methods of care that patients can access safely right from home and the designers to think as the homes of the future will be flexible to support both an array of devices to provide a healthcare delivery and the humanization and personalization of the domestic space. The paper identifies criteria for the flexible design of the physical environment (including the home, equipment, furniture, etc.) that support and facilitate safety, comfort, and healing, in relation to the various patient populations, at their own physical and psychosocial needs, at the range of equipment/technology (from chronic to acute care), at the caregiving and daily living activities.

Keywords: Flexibility, Patient-Centered Design, Aging in Place, Universal Design, Healthcare at Home, Customization

1. Introduction

In the discussions triggered by the ageing of the population in the last thirty years, the impact of the ageing in place and the healthcare at home on both the healthcare facilities cost and the quality of care has only marginally been addressed. The percentage of the older people in Europe is currently the highest in the word and growing. It is estimated by Eurostat and WHO'statistics that in 2080 the share of people aged 80 and over will be more than double of 2019 ($14,6 \%$ compared to 5,8\%) [1]. At the same time, it increases the impact that the aging of the population has on assistance, on the costs of health services, on social organization, on the lives of the elderly and on the maintenance of their conditions of personal autonomy. These population trends are driving the shape and scope of home healthcare services. The desires and complex care needs of an aging population, the advances in medical technology and care delivery models have initiated a shift from providing care in hospitals to outpatient settings. Recently, these factors and their the acceleration / amplification - are pushing healthcare options, even further

[^0]from the traditional inpatient and outpatient settings towards acute and subacute care in the home. This has led the medical community to look toward providing more tools and methods of care that patients can access safely right from home and the designers to think as the homes of the future will be flexible to support both an array of devices to provide a healthcare delivery and the humanization/personalization of the domestic space.

In Italy, the Covid-19 pandemic was a period of experimentation on this issue. Territorial operational centres or telephone support services contributed to the improvement of home care for people affected by Covid-19 as well as for non-Covid subjects with chronicity/fragility, necessarily domiciled also because of the moment of great distress of the National Health Service (SSN). Keeping people at home has not only led to an improvement in the quality of care of the patients, especially the most frail ones, but also to greater safety in care, as it has reduced exposure to infectious risk factors [2] [3]. The same investments of the PNRR foresee a loan of 4 billion euros for the assistance of people suffering from chronic diseases, with particular attention to those over 65. Among the main objectives is the increase in the number of patients cared for in their own homes, increasing it to over 1.5 million by 2026.

Starting from this scenario of needs and opportunities, the paper identifies, through a literature review on Scopus and PubMed databases, the main trends concerning the main approaches on the role of the built environment in safe and effective delivery of healthcare at home, for patients and providers. Appropriate search terms have been selected based on previous literature reviews and papers collected in the field of healthcare facilities. A two-level set of keywords has been identified as well as some eligibility criteria in order to separate in-scope from out-of-scope results and avoid biases generated by the selection through keywords. (Table 1). Additional information has been gathered from secondary sources such as research centers repositories (Health and Care Infrastructure Research and Innovation Centre, International Academy for Design \& Health, Center of Health Design).

Table 1. Keyword identification and eligibility criteria used.

	Type of healthcare at home	Residential Design Approaches
Keywords search string:	"hospital in the home", "hospital at home", "home healthcare", "home hospitalization", "Early supported discharge", "Homebased primary care"	"Universal Design", "Aging in Place", "Healthcare at Home"
Eligibility criteria (Nature of the topic)	Visual Environment, Audio En Waynding System, Sustainability Spaces, Staff Support Sp	ronment, Safety Enhancement, Patient Space, Family Support esisped

Criteria were subsequently defined for the flexible design of the physical environment (including the home, equipment, furniture, etc.) that support both the safety, comfort, healing of the patient (with the own physical and psychosocial needs in the daily living activities), and the activities of the caregiving with the range of equipment/technology for the different levels of care (from chronic to acute care).

2. The home as a High-Performance Environment: an analytical framework

Back in 2011, the report by the National Research Council (NRC) declared, "Health care is coming home" [4]. However, the literature is confusing because there are different terms of healthcare at home (Hospital in the home, HITH; Home Healthcare; Home Hospitalization; Early Supported Discharge) [5] and different types of services, some of which focus on specialities (surgical and medical specialities, rehabilitation medicine, geriatrics, psychiatry, infectious diseases, respiratory diseases), others on diagnostic groups (e.g. hip fracture or stroke), or a mixture of them [6] [7]. Both the complexity and the intensity of the health care services provided in home settings are increasing and making changes to home care. In fact, it is changing from a service to help people or older adults - with disabilities, chronic illness, or cognitive impairment by assisting in their daily living activities - to a service that provides acute or subacute treatment in a patient's residence for a condition that would normally require admission to hospital. The key is substituting for in-hospital care. Home-Based Care includes admission avoidance (i.e. full substitution for hospitalisation) and early discharge followed by care at home (i.e. shortened hospitalisation). It can be cost-effective and convenient, reducing unnecessary hospital admissions and allowing patients to receive the care they need where they are most comfortable [8]. The advantages of Home-Based Care can be summarized in the following ways:

- greater safety for frail elders because they will have fewer of the common complications of hospitalization (such as delirium, stress etc.). The NRC [4] report noted that acutely ill older persons often experience adverse events when cared in the acute care hospital, while they value the delivery of health care at home, as it promotes healthy living and well-being when it is managed well. Living independently at home is a priority for many, especially individuals who are ageing with disability;
- greater patient-centred care [9], that leads to a better understanding of important issues, such as how medications and nutrition are handled, a more intimate clinician-patient relationship;
- greater patient autonomy [10], especially patients with lower levels of mobility and elders can benefit from the opportunity to receive the care they need where they are most comfortable. Ageing in place in the home includes efforts to help beneficiaries remain comfortable at home in the last 6 to 12 months of life.
- lower costs [9][5] and lower strain on saturated healthcare facilities (including emergency departments and hospitals with limited bed capacity) [11]. Besides, Home Healthcare can reduce unnecessary hospitalization and connected risk of healthcare-associated infections [10] [12].
While there are numerous advantages to Healthcare at Home, there also are many challenges. There are still only a few healthcare organizations that offer formal homecare models for primary and hospital-level care (e.g. Johns Hopkins Hospital at Home, Ohio Veterans Administration Hospital in Home) and there are limited researches available on the role of the built environment in safe and effective delivery of healthcare at home, for both patients and providers (Universal Design, Aging in Place, Healthcare at Home approaches). However, as Healthcare at Home is becoming more commonplace as a practice, there is an opportunity to shift thinking from the typical residential design
to a more sustainable home concept, 'how the home can support health and healing'. This has led the medical community to seek to provide more tools and methods of care that patients can safely access right from home, and the designers to think as the homes of the future will need to be laid out strategically to address both an array of ageing needs and support this form of healthcare delivery.

3. Persons, tasks, equipment/technology and environments interaction

Over the last ten years, technological progress in healthcare management and communication systems (telemedicine), the gradual replacement of the human factor through robotization (automation of care work) and digitization (magnetic resonance, CT and PET scans) have led to a reorganization of hospital facilities so that they can accommodate the changes taking place in a fruitful relationship between.

- user-centred approach that has influenced not only the modes of communicative exchange between patient and medical staff but also the physical-functional characteristics (accessibility, distribution of spaces) and the psycho-sensory and perceptive characteristics of care spaces finding confirmation in EvidenceBased Design.
- bio-technological approach that has led to a further reorganization of hospital structures and to the emergence of new, highly original and relevant forms of interaction aimed at the 'medicalization of life'.
This approach applied to home care involves a broad reflection of the humandesigned system-environmental relationship, in which the quality of the designed systems is conveyed through the correct correspondence among the users, the tasks, the physical environment and the range of equipment/technology. With Regard to this relationship some considerations can be made about the type of users and tasks, the physical environment and the range of equipment/technology (Figure 1).

Figure 1. Model of Health care at Home

With the ageing of the population, more services will be required for the treatment and management of chronic and acute health conditions at home, especially those most prevalent with ageing (e.g. hypertension, arthritis, heart disease, cancer, diabetes, and stroke) [13]. The primary persons involved in home health care are: the health care provider; the health care recipient; family and friends, who are not primary caregivers, but are included within the social environment of the patient. The physical environment (e.g. including home, equipment, furniture) can support and facilitate - in carrying out the tasks - safety, comfort, accessibility and healing, but the people and their tasks must be considered simultaneously with the abilities/disability that evolve and shift throughout the life course (both on a temporary and permanent basis). The well-being of the users, who receive care at home, depends on the capacity of space/equipment to: maintain/facilitate their level of independence; minimize patient stress anxiety and risk of fall; guarantee accessibility, safety of use, patient satisfaction and comfort. The wellbeing of care-providers depends on safety against the risk of injury, such as musculoskeletal injuries from patient handling; slips/trips/lift injuries, from dangerous flooring/rugs/stairs; control of the infections [14]; mental health stressors [15].

Many home health care tasks require the use of technologies and equipment (medication administration equipment, durable medical devices, dialysis machines, feeding tubes, catheters, defibrillators, ambulation aids and oxygen tanks) by the health care providers as well as the care recipients. However, these technologies and equipment were designed by manufacturers to be used only in clinical settings by trained professionals. This most complex medical equipment leads to the highest risk of injury, as shown by an analysis of adverse events at home. Moreover, The home environment differs in many ways from the controlled environment of a hospital or clinic. This imposes unique challenges because each home a health care worker visits is different and their ability to provide adequate care may be hindered by environmental (i.e., crowded or dimly lit surroundings) and socio-environmental factors (such as family over or underinvolvement) [16].

The design process aims are thus focused on designing physical and cognitive interfaces. They are intended as places where a continuous process of functional interaction occurs among the users, the systems (space and range of equipment/technology/furniture), and the environment. In this broader view of the human-interface-environment paradigm, the configuration of the interface as a prosthetic system intent on satisfying the individual's well-being can be identified on two levels characterizing the design process: Physical/technological layout level and the level of furniture/technological equipment

4. Design criteria for layout adaptability to physical and technological needs

The layout of a home environment can have important implications for delivering care safely, supporting activities of daily living, and minimizing the risk of injury, especially for impaired, elderly or otherwise physically compromised individuals. The human and private-space relationship involves considerations of spatial organization and on the technological apparatus that impacts the usability of that apparatus, regardless of the body's shape, posture or capacity to move. This level concerns the choice of spatial and technological solutions able to facilitate care tasks and ensure conditions of psychophysical well-being, accessibility and safety for patients and operators. Likewise, the user-object system (furniture/technological equipment) relationship involves
considerations of the quality of objects constructed in relation to human needs. In order for this system to assume an interface role and become prosthetic, it must be capable of enabling the functional capacities of a person in relation to his/her remaining abilities. This is done through observation of gestures and is not leveraged on a single standard of performance but rather on the capacity to guarantee performances that are useful toward the user's remaining functionalities. Considering that the location of care delivery in the home depends on the level of care needed and that the planning for a renovation or remodel to support home healthcare needs can be challenging when future needs are unknown, designers should consider how the home might accommodate some of the more challenging healthcare needs that may arise, and prioritize from there, to determine what is most critical and feasible. Focusing on the bedroom that may be more appropriate for acute care, some researches show the following needs and consequent design criteria.

4.1. Accessibility, ease of use, safety and physical well-being of the patient

In this framework of needs, design criteria of the layout of bedroom concern: 1) maximize open areas around the bed and primary path of circulation (i.e. from the bedroom to the bathroom); 2) place the bedroom adjacent to the bathroom and on the main level (street level) of the home (or accessible by ramp, stairlift, or elevator) [17]; 3) use of smooth, level floor surfaces with minimal variations (minimize thresholds) that allow freedom of movement [18]; 4) avoid sources of falling using soft interior flooring materials (e.g., cork, rubber, or linoleum) that are gentler underfoot than harder materials and can lessen the impact of falls, also avoid deep pile carpet or loose/worn carpet and flooring materials with intricate high-contrast patterns [19]; 5) provide wainscot trim that protrudes from the wall (i.e. handrails, grab bars with wood pleasant finishes) to offer support and a reference for orientation of the patient [20].

In this framework of needs, design criteria of the furniture/technological equipment that may help to support increased independence for patients receiving care at home concern: 1) integrate technological device in the furniture system, such as an intercom system or voice-activated smartphone technology, easy-to-reach operational (remote) controls that allow natural light to be blocked/reduced during the day if needed, electrical system with sufficient output to support all medical equipment without overloading outlets, Aging Service Technologies (ASTs) including sensors and actuators that monitor and evaluate health conditions and monitor daily activities (fall- and wandering-detection technologies) [21]; 2) easy-to-open doors/furniture (consider handling grip, mechanics, and weight of the door); 3) bed and lounge chairs adjustable for safe entry and exit [18].

4.2. Psycho-emotional well-being and psychosocial support of the patient

While home care can offer many benefits to one's mental state, the same care may also present emotional challenges. Social, cognitive, personal, and behavioural factors are key when designing to support better outcomes for patients receiving healthcare in the home and for staff providing healthcare [22]. In this framework of needs, design criteria of the layout of the bedroom concern: 1) Access to positive distractions (e.g., naturethemed artwork, music, TV, Internet, reading materials); 2) movable screens/curtains for visual and auditory separation minimizing stimulation and optimizing privacy; 3) allow reorganization of space (e.g., easily movable furniture, modular elements) to accommodate changing needs; 4) ample windows that open on the outside with scenes
of good quality that can be seen from any seat, integrating to them easy-to-reach operational (remote) controls that allow natural light to be blocked/reduced during the day if needed [18]; 5) Space for people to sit with the individual receiving care without obstructing the provision of care; 6) Space for second bed/sleeping arrangements to facilitate the proximity of a family member [22].

In this framework of needs, design criteria of the furniture/technological equipment concern: 1) integrate (into equipped walls and furnishings) medical equipment (e.g., oxygen tanks, home-dialysis units, infusion pumps, blood glucose meters, feeding tubes, catheters, commodes, ambulation aids, patient lifts/hoists and specialist equipment) near the bed/chair care areas to support changing levels of care [16]; 2) movable screens/curtains to cover medical equipment whether fixed or mobile, from the patient's view during exams and/or the administration of treatments; 3) integrate medical devices (medical gases electrical devices, oxygen and) in a compact package within technical interstitial spaces such as ceiling or equipped floors or technical cores that can be expanded and integrated over time as the conditions of use change concerning the patient subjective conditions (intensity of care); 4) wireless or wired internet connection to facilitate telehealth/telemedicine [4]; 5) monitoring devices (sensors or wearable) to record daily living activities and transmit data to caregivers (where data is measured against present targets); 6) furniture that is easy to move and adjust (e.g. furniture with modular elements) can accommodate changing needs for the variety of the patient types receiving a variety of care in their home.

4.3. Efficient delivery of care and work-related safety of the caregivers

In this framework of needs, design criteria of the layout of the bedroom concern: 1) design spaces for care that are quiet or can be closed off (at least temporarily) from distractions from pets and children to support safe care procedures (medication preparation, use of sharps, exams and treatment) [16] [23] [15] and that facilitate better communication between patients and care providers through telesupport systems [16]; 2) easy access to sink or alcohol gel dispenser in care areas, in a location where caregivers can wash their hands and still keep direct visual contact with their patients; 3) guarantee adequate space for two people to provide caregiving assistance using patient-handling equipment (e.g. to move the patient to toilet, bed, car).

In this framework of needs, design criteria of the furniture/technological equipment concern: 1) easy-to-clean materials to reduce surface contamination; 2) provide computer devices for digital processing, and archiving for paper documents, and devices for viewing diagnostic images by multiple users contemporaneously; 3) integrate the furniture with telemedicine exam equipment such as a laptop with integrated medical devices (e.g., horoscopes, stethoscopes and vital signs monitors, spirometers); 4) provide a designated location for medical device and patient handling equipment manuals for caregiver access; 5) prepare the ceiling or wall for future integration of repositioning devices that support ergonomic conditions for patient handling and movement, if needed (e.g. ceiling-mounted trapeze hooks); 6) arrange multiple storage locations for personal protective equipment to facilitate proper safety protocols; 7) provide easily accessible and adequately sized storage for sharps disposal, it may help to reduce exposure to punctures or cuts [15].

4.4. Psycho-emotional well-being of the caregiver

This need can be satisfied by design criteria concern: 1) Operable windows that can be opened for cross-ventilation and fresh air inlet; 2) lighting systems with scattered light that is uniform, indirect, and not blinding, dedicated to the various work areas, with characteristics and arrangements that do not cause disturbance, and with an adequate light quality; 3) furniture and equipment organization to allow communicative exchange between health personnel; 4) efficient ventilation to minimize unpleasant smells and control system of air temperature, relative humidity and flow speed maintained at comfort level without dramatic difference between spaces; 5) use of Telehealth that may also be able to help support the psychosocial needs of care providers who in a particular context (eg. rural zone) can feel quite isolated by lack of a collegial support (burnout, stress from mentally and emotionally taxing profession).

5. Conclusions

Healthcare at Home offers potential advantages over traditional healthcare options for both healthcare organizations and patients, which suggests in the future, there will be the potential for more wide-reaching extensions of the hospital into the home environment. However, if the home is not properly equipped, or if a formal home-care model for hospital-level care is not available, hospitalization or a move into a rehabilitation or longterm care setting may be the only viable option for people with increasing healthcare needs [23]. The majority of the literature refers to individuals receiving care at home as "patients". However, the individuals receiving care may or may not see themselves as patients in their own homes. This is an important distinction in how care is provided and designed. Healthcare at Home does not involve just a functional dimension, bat also an emotional one (sense of comfort and safety, based on familiarity and/or memory). For these reasons, the limits to the application of this model concern: the degree of adaptability of dwellings both to the evolving needs of its residents and to the evolution of the disease; the high costs of upgrading and adapting. Continental and Nord Countries are moving in this direction both with guidelines for the low-cost adaptability of the existing and new housing stock (Lifetime Homes Design Guide, UK, 2010) and with financial schemes for the adaptation of housing to the individual limitations of the people. Multidisciplinary equips (formed by owners, architects and designers in healthcare) may be the best qualified to undertake the challenge of design for Healthcare at Home. They aim to balance the provisions for safety with the preservation of the personal effects and person-centred experience that make healthcare at home such an attractive option for healing in the first place. Therefore, the validity of a project can be appreciated by the multifactorial quality of the space. It can be connected with physical, environmental, management, perceptual, psychological and relational elements, in a perspective that is not "patient-centric" but considers the totality of users.

References

[1] European Commission. Council Recommandation on the 2019 National Reform Programme of Italy and delivering a Council opinion on the 2019 Stability Programme of Italy. Available from:
https://ec.europa.eu/info/sites/default/files/file_import/2019-european-semester-country-specific-recommendation-commission-recommendation-italy_en.pdf.
[2] Direzione Generale della Programmazione Sanitaria. Piano Nazionale della Cronicità. 2016. Available from: https://www.salute.gov.it/imgs/C_17_pubblicazioni_2584_allegato.pdf.
[3] WHO, Demographic trends, statistics and data on ageing. Available from: https://www.euro.who.int/en/health-topics/Life-stages/healthy-ageing.
[4] National Research Council. Health care comes home: the human factors. Technical report, p.9, The National Academies Press, Washington, DC 2011.
[5] Caplan GA, Sulaiman NS, Mangin DA, Ricauda NA, Wilson AD, Barclay L. A meta-analysis of hospital at home. Medical Journal of Australia. 2012; 197 (9); 512-519.
[6] Shepperd S, Harwood D, Jenkinson C, Gray A, Vessey M, Morgan P. Randomised controlled trial comparing hospital at home care with inpatient hospital care. I: Three month follow up of health outcomes. British Medical Journal. 1998:1786-91.
[7] Caplan GA, Ward, JA, Brennan NJ, Coconis J, et al. Hospital in the home: a randomised controlled trial. Medical Journal of Australia. 1999; 170: 156-160.
[8] Levine DM, Ouchi K, Blanchfield B, Diamond K, Licurse A, Pu CT, Schnipper, JL. Hospital-level care at home for acutely ill adults: A pilot randomized controlled trial. J. of General Internal Medicine. 2018; 33(5): 729-36.
[9] Cryer L, Shannon SB, Van Amsterdam M, Leff B. Costs For 'hospital at home' Patients were 19 percent lower, with equal or better outcomes compared to similar inpatients. J. Health Affairs. 2012; 31(6): 1237-43.
[10] Covinsky KE, Palmer RM, Fortinsky RH, Counsell SR, Stewart AL, Kresevic D, Landefeld CS. Loss of independence in activities of daily living in older adults hospitalized with medical illnesses: Increased vulnerability with age. J. of the American Geriatrics Society. 2003; 51 (4); 451-58.
[11] Cohn D, Taylor P. Baby boomers approach 65, Glumly. Pew Research Center's Social \& Demographic Trends Project, December. 2010. Available from: http://www.pewsocialtrends.org/2010/12/20/baby-boomers-approach-65-glumly/
[12] Leff B, Burton L, Mader S, Naughton B, Burl J, Inouye SK, Burton JR. Hospital at home: Feasibility and outcomes of a program to provide hospital-level care at home for acutely ill older patients. Annals of Internal Medicine. 2005; 143 (11): 798.
[13] Centers for Disease Control and Prevention (CDC), National Center for Health Statistics, US Department of Health and Human Services, 2004. Health Data Interactive. Available from: www.cdc.gov/nchs/hdi.htm
[14] Polivka BJ, Wills CE, Darragh A, Lavender S, Sommerich C, Stredney D. Environmental health and safety hazards experienced by home health care roviders: a Room-by-Room Analysis. J. Workplace Health \& Safety. 2015; 63 (11): 512-522.
[15] Markkanen P, Quinn M, Galligan C, Chalupka S, Davis L, Laramie A. There's no place like home: A qualitative study of the working conditions of home health care providers. J. Occupational and environmental medicine. 2007. 49 (3): 327.
[16] Beer JM, McBride SE, Mitzner TL, Rogers, WA. Understanding challenges in the front lines of home health care: A human systems approach. In applied rrgonomics. 2014; 45 (6): 1687-1699.
[17] National Association of Home Builders. Aging in place remodeling checklist. Available from: https://www.nahb.org/Education-and-Events/Education/Designations/Certified-Aging-in-Place-Specialist-CAPS/Additional-Resources/Aging-In-Place-Remodeling-Checklist
[18] Parsons KS, Galinsky TL, Waters T. Suggestions for preventing musculoskeletal disorders in home healthcare workers: part 2: Lift and transfer assistance for non-weight-bearing home care patients. J. Home Healthcare Nurse. 2006; 24 (4): 227-233.
[19] AIA New York Design for Aging Committee. Aging in place guide for building owners: Recommended age-friendly residential building upgrades. Available from: https://46u0j30o449zq8181dfurbcj-wpengine.netdna-ssl.com/wp-content/uploads/2016/10/AIP_2017_EN.pdf
[20] Brookfield K, Fitzsimons C, Scott I, Mead G, Starr J, Thin N, Ward Thompson C. The home as enabler of more active lifestyles among older people. J. Building Research \& Inform. 2015; 43 (5): 616-630.
[21] Lee BC, Xie J. How do aging adults adopt and use a new technology? New approach to understand aging service technology adoption. HCI International 2018. Posters' Extended Abstracts: 161-166.
[22] Exley C, Allen DA. Critical examination of home care: End of life care as an illustrative case. Social Science \& Medicine. 2007; 65 (11): 2317-27.
[23] May C. Mobilizing Modern Facts: Health technology assessment and the politics of evidence. J. Sociology of Health and Illness. 2006; 28 (5): 513-32.

Subject Index

(dis)ability 3
360-degree films 127
abatement of pollutant 507
access 151
accessibility $12,69,135,143,167$,177, 247, 255, 263, 280, 304, 383,391, 400, 419, 427, 435, 443, 451,$459,467,475,549,589$
accessibility and usability 218
accessibility pattern language 367
accessible heritage 499
accessible tourism 467
active learning 541
adaptive refurbishment 93
aesthetics 12
age-friendly cities and communities 185
aging in place 93, 348
architectural barriers 467
architecture 383
assessment method 597
Australia 151
automatic speech recognition 533
awareness 255
barrier free 135
BIM-interoperability 44
blind 383
building performance assessment 331
buildings 435
built environment 280, 435
captions 533
certification 340
CFD analysis 359
chatbot 367
circular strategies 93
circulation 375
city 581
city of proximity 288
co-design 159, 400
cognitive inclusion 127
community engagement 263
complaints 36
composite material 359
configurational analysis 483
conservation 419
conversion of use 435
COVID-19 44, 53
critical and existential design 3
cultural dissemination 427
cultural heritage $296,383,435,443$, $451,459,475,491,507$
customization 348
Danish building regulations 69
demand-responsive-transport 304
dementia 323
Denmark 167
design 408, 451
design for all 288, 331
digital 459
digital infrastructure 549
digital learning 391, 549
digital learning materials 557
disability 69, 201, 408
disabled people 143
discourse analysis 28
diversity 85, 135
ecclesiastic heritage 209
economic benefits 491
elderly 53
emancipatory design 3
emotion 12
empathy 408
empathy exercises 127
English language learners 533
environment 61
equality 475
evaluation 331
evaluation tool 597
evidence based design 323
exhibit planning 120
exhibition design 226
exhibits 120
experimental design 77
expertise 549
experts 400
eXtended Reality (XR) 391, 549
Faro Convention 419
feedback 36
finite element modelling 359
flexibility 348
foreign language instruction 533
fortified architecture 451
funding 549
governance 247
graph database 69
guideline 103
handbike 359
HBIM 459
HCI design patterns 367
healthcare 340
healthcare at home 348
healthcare design 323
healthy and active ageing 185
healthy communities 209
heritage 427
higher education 541, 557, 573
hospital 331
housing adaptations 143
housing development 159
housing welfare 201
human development 467
human impairment 36
ICT accessibility 557
ICT decision support tools 271
immersive 408
inaccessible places 235
inclusion 193, 263, 304, 315, 400,408, 427
inclusive cities 288, 296, 467
inclusive design $135,159,209,331$,340, 367, 597
inclusive design tools 247
inclusive play 218
inclusivity 177
India 53, 315
individual and community rights 419
Information and Communications
Technology (ICT) 391, 427, 451,515, 541, 549
integrated policies 111
intellectual disabilities 400
interdisciplinarity 143
intersectionality 85
landscape architecture 167
large museum 483
laser scanning 515
Lecce accessibility plan 263
legal framework 573
lightweighting 359
local government 103
low-middle income countries 573
low-vision 383
manifesto 3
meaning 12
methodological approach 515
micro-mobility 288
microclimate 507
mobility-as-a-service 304
multi-modality 533
multidisciplinarity 235
multiscalarity 235
multisensorial 408
museum 491
neighborhood design 193
neighbourhood 185
norm-deviation 85
norms 85
older people 193
pandemic events 507
participatory action research 103
patient-centered design 348
pedagogics 549
personalization 143
phase design 177
philosophy of gesture 443
physical accessibility 515
physical and cultural accessibility 226
physical distancing 375
plans for the removal of architectural barriers 271
playground 218
playspaces 103
politics 151
Pompeii 459
post occupancy evaluation 159
primary and secondary education 391, 549
priority 435
"Progetto di Vita" (PdV) 201
public building and spaces 296
public policies 271
public schools 589
public space(s) 61, 315, 408, 581
public-service design 36
Quality of Life (QoL) 53
refurbishment 435
tactile paving 375
regenerative mapping 255
regional management 135
regional policies 280
regulations 525
residential building stock 93
restoration 226
risk reduction 507
safe accessibility 44
safe environment accessibility 507
sanitation 315
Santa Giulia Museum in Brescia 419
school 597
school building(s) 44, 589
school environments 525
senior housing 159
Smart Cultural Heritage 4All 443
social housing 201
social inclusion 255, 565
social infrastructure 209
social relations 443
social sustainability 28
space management 44
Spatial Decision Support System (SDSS) 483
spatial plan 177
special needs students 565
speculative design 3
sport spaces 209
standards 340, 525
standards housing 151
storytelling 408
survey 515
sustainable development 573
sustainable development goals 491
SWOT Survey 255
synaesthesia 235
Tanzania 573
tourism 296
unidirectional circulation 375
universal accessibility 288
universal design (UD) 3, 28, 53, 85,103, 120, 167, 177, 201, 271, 304,$315,348,375,391,491,525,533$,557, 565, 573, 581, 597
universal design and individualdifferences533
universal design for learning 533, 541
universal design of research 77
universal values 427
university 581
university spaces 565
urban accessibility 111, 499
urban and architectural barriers 263
urban planning 111
urban planning and design 271
urban regeneration 581
urban wellbeing 111
usability $\quad 12,280,391,435,549$
user diversity 77
user involvement 525, 589
user needs 525
user statements 69
users centered design 323
Venice 185
visually impaired 375
vulnerable community 61
wayfinding 483
Web Accessibility Directive (WAD) 36
web and mobile design 367
wellbeing 323
workplaces 127

Author Index

Accardi, A.R.D.	226	De Salvatore, A.	280
Aceves Tarango, V. del S.	. 61	De Vivo, M.A.	507
Adamini, R.	359	Delogu, F.	597
Ajuriaguerra Escudero, M.A	.A. 499	Delponte, I.	304
Alberti, F.	111	Denizou, K.	525
Almici, A.	491	Donato, C.	597
Alonso, A.	288	Ebbesen, C.	475
Amini, S.	44	Eftring, H.	127
Arenghi, A.	v, 419	El Rida Al Sharif, A.	20
Argiolas, R.	451	Emilio, F.	581
Azzolino, C.	565	Ericsson, S.	85
Ballegaard, E.	69	Fernández González, J.	375
Baraas, R.	391, 549	Ferrucci, F.	443
Baroni, F.	541	Fikfak, A.	177
Bencini, G.	v	Fior, M.	209, 597
Bencini, G.M.L.	533	Fuglerud, K.S.	36
Bercigli, M.	263	Gaballo, G.	263
Berget, G.	77	Garay Gutiérrez, D.G.	61
Bifano, E.	296	Garofolo, I.	v
Biocca, L.	483	Giacometti, V.	296
Bögelsack, K.	135	Giorgi, E.	61
Bonetti, M.	573	Gola, M.	209
Bortolotti, E.	400	Gongal, A.	375
Brenna, M.	475	Gramkow, M.C.	167
Bringolf, J.	103, 151	Grangaard, S.	28
Buffoli, M.	209, 597	Greco, A.	296
Burelli, A.	247	Grom, J.	177
Camodeca, R.	491	Halbach, T.	36
Capolongo, S. 20	209, 323, 331	Hedvall, P.-O.	85
Carnemolla, P.	103	Hussain, A.	557
Cavalieri, F.	383	Iram	53
Cellucci, C.	348	Jiménez Martín, D.	288, 499
Chamorro-Koc, M.	408	Jonsson, O.	12
Chiarelli, B.	111,271	Kajita, M.	69
Chiesi, L.	143	Keller, J.	85
Cioci, S.	255	Kjellstrand, S.	127
Coccoli, C.	419	Kose, S.	435
Conti, C.	255	Kvikne, B.	77
Costa, P.	143	Lacirignola, A.	565
Costa, V.	304	Lamíquiz, P.	288
Dalpra, M.	218	Landoni, M.	400
Daprà, F.	209	Laurìa, A.	143
De Berardinis, P .	383	Lavtižar, K.	177

Lazzari, M. 541
Lygum, V.L. 28
Mangili, S. 323
Mannai, E. 451
Marchigiani, E. 271
Marconcini, S. 515
Marta, C. 581
Marzi, L. 44
Mastrogiuseppe, M. 400
Matone, F. 280
Merit, M.T. 167
Michaelis, S. 135
Montacchini, E. 93
Morandini, F. 427
Mosca, E.I. 209, 331, 340, 597
Musanti, F. 235
Noel, M. 573
Novak, V. 271
Oberti, I. 201
Pavesi, A.S. 201
Peraz, A. 271
Perego, C. 201
Picone, R. 459
Pilar, V.M. 581
Pintus, V. 451
Pirinen, A. 159
Prescia, R. 226
Pretelli, M. 507
Price, M. 85
Pucci, M. 533
Purkayastha, D. 315
Raheja, G. 53, 315
Raimondi, F. 263
Ramírez Saiz, A. 288, 499
Rasmussen, J.D. 3
Rebecchi, A. 209

[^0]: ${ }^{1}$ Corresponding Author, Assistant Professor in Department of Architecture and Arts, Iuav, University of Venice, Dorsoduro 2206, 30123 Venezia, Italy; E-mail: ccellucci@iuav.it

