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Abstract

In this article, we generalize the Wasserstein distance to measures with di�erent masses. We study the
properties of such distance. In particular, we show that it metrizes weak convergence for tight sequences.

We use this generalized Wasserstein distance to study a transport equation with source, in which both
the vector �eld and the source depend on the measure itself. We prove existence and uniqueness of the
solution to the Cauchy problem when the vector �eld and the source are Lipschitzian with respect to the
generalized Wasserstein distance.
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The problem of optimal transportation, also called Monge-Kantorovich problem, has been intensively
studied in the mathematical community. Related to such problem, the de�nition of the Wasserstein
distance in the space of probability measure has revealed itself to be a powerful tool, in particular for
dealing with dynamics of measures (like the transport PDE, see e.g. [2]). For a complete introduction to
Wasserstein distances, see [19,20].

The main limit of this approach, at least for its application to dynamics of measures, is that the
Wasserstein distanceWp(µ, ν) is de�ned only if the two measures µ, ν have the same mass. For this reason,
in this article we �rst de�ne a generalized Wasserstein distance W a,b

p (µ, ν), combining the standard

Wasserstein and L1 distances. In rough words, for W a,b
p (µ, ν) an in�nitesimal mass δµ of µ (or ν) can

either be removed at cost a|δµ|, or moved from µ to ν at cost bWp(δµ, δν).
After proving simple but important properties of this distance, we show that it is the natural distance

to state existence and uniqueness of the solution to the following dynamics of measures:{
∂tµ+∇ · (v [µ] µ) = h [µ] ,

µ|t=0
= µ0.

(1)

Such equation is intensively used for modelling of crowd dynamics, where µt represents a pedestrian
density (see e.g. [6,8,12�14,16�18]). Other examples in one dimension for structured populations are
given in [4,10,11]. Several authors have studied (1) without source terms, i.e. h ≡ 0, showing that it
is very convenient to use the standard Wasserstein distance in this framework. In particular, in [1] the
authors prove existence and uniqueness of the solution under Lipschitzianity of v with respect to µ, when
the space of measures (of given �xed mass) is endowed with the Wasserstein distance. See also [5]. We
also showed that these hypotheses give convergence of numerical schemes [14].

The main limit of the approach based on the standard Wasserstein distance is that it cannot en-
compass the case of a source h. Indeed, in this case the mass of the measure µt varies in time, hence



in general Wp(µt, µs) is not de�ned for t 6= s. Sources (and sinks) are nevertheless very interesting for
models of pedestrian, for instance in the case of people entering or exiting a door. It is interesting to
recall that the L1 distance (that one could try to use, since it is de�ned even between two measures with
di�erent masses) is not suitable in this context, since Lipschitzianity of v with respect to µ measured in
L1 does not guarantee uniqueness (see [14]).

In this article, to deal with a source in (1), we focus on the space of Borel measures with �nite mass
on Rd (denoted withM), that we endow with the generalized Wasserstein distanceW a,b

p . We also denote
withMac

0 the subspace ofM of measures that are absolutely continuous with respect to the Lebesgue
measure and with bounded support. In this framework, we prove existence and uniqueness of the solution
of (1) with µ0 ∈Mac

0 under the following hypotheses:

(H)

The function

v [µ] :

{
M→ C1(Rd) ∩ L∞(Rd)
µ 7→ v [µ]

satis�es

� v [µ] is uniformly Lipschitz and uniformly bounded, i.e. there exist L, M not depending on
µ, such that for all µ ∈M, x, y ∈ Rd,

|v [µ] (x)− v [µ] (y)| ≤ L|x− y| |v [µ] (x)| ≤M.

� v is a Lipschitz function, i.e. there exists N such that

‖v [µ]− v [ν] ‖C0 ≤ NW a,b
p (µ, ν) .

The function

h [µ] :

{
M→Mac

0

µ 7→ h [µ]

satis�es

� h [µ] has uniformly bounded mass and support, i.e. there exist P,R such that

h [µ] (Rd) ≤ P, supp (h [µ]) ⊆ BR(0).

� h is a Lipschitz function, i.e. there exists Q such that

W a,b
p (h [µ] , h [ν]) ≤ QW a,b

p (µ, ν) .

Remark 1. The hypotheses (H) can be relaxed in standard ways. For example, the results still hold if
we remove the uniform boundedness of v on Rd and ask for uniform boundedness only in a point x0. See
e.g. [3, Chap. 2].

Remark 2. The application to pedestrian dynamics also explains the choice of the basic assumptions
(H), namely that we deal with measures with bounded support.

The structure of the paper is the following. In Section 1, we de�ne the generalized Wasserstein distance
W a,b
p and we prove some important properties related to that. In particular, this distance metrizes the

weak topology for tight sequences. Moreover, M is complete with respect to such distance. We also
compare W a,b

p with other distances, like the Levy-Prokhorov distance. We then restrict ourselves to the

study of W a,b
p inMac

0 and provide Gronwall-like estimates under �ow action.

In Section 2, we describe the complete picture for (1) under (H). We �rst provide a candidate solution
for (1) via a semi-discrete Lagrangian scheme and using the sample-and-hold method. We then show that
it is indeed a solution, and �nally that it is unique.

2



More results on the generalized Wasserstein distance will be proposed in the forthcoming paper [15].
There, we prove a duality formula of equality between the W 1,1

1 distance and the �at distance, provide

the analog of the Benamou-Brenier formula for W a,b
2 and generalize results of Section 2.

1. Generalized Wasserstein distance

In this section, we de�ne the generalized Wasserstein distanceW a,b
p (µ, ν) that we study in this article,

and prove some useful properties. We �rst recall basic de�nitions and notations about measure theory
and Wasserstein distance. For a complete introduction, see [7,20].

1.1. Notation and standard Wasserstein distance

In this section, we �x the notation that we use throughout the paper, and recall de�nitions and
properties related to measure theory and the Wasserstein distance, like push-forward of measures γ#µ
and transference plans.

Let µ be a positive Borel measure with locally �nite mass. If µ1 is absolutely continuous with respect
to µ, we write µ1 � µ. If µ1 � µ and µ1(A) ≤ µ(A) for all Borel sets, we write µ1 ≤ µ. Given a measure
with �nite mass, we denote with |µ| := µ(Rd) its norm. More in general, if µ = µ+−µ− is a signed Borel
measure, we have |µ| := |µ+| + |µ−|. Such norm de�nes a distance inM, that is |µ − ν|. It is useful to
recall that, if µ1 � µ and dµ1 = f dµ with f ∈ L1(dµ), then |µ1| =

∫
|f | dµ.

Given two measures µ, ν, one can always write in a unique way µ = µac + µs such that µac � ν and
µs ⊥ ν, i.e. there exists B such that µs(B) = 0 and ν(Rn \B) = 0. This is the Lebesgue's decomposition
Theorem. Then, it exists a unique f ∈ L1(dν) such that dµac(x) = f(x) dν(x). Such function is called
the Radon-Nikodym derivative of µ with respect to ν. We denote it withDνµ. For more details, see e.g. [7].

Given a Borel map γ : Rd → Rd, one can consider the following action on a measure µ ∈M:

γ#µ(A) := µ(γ−1(A)).

An evident property is that the mass of µ, i.e. µ(Rd) is identical to the mass of γ#µ.
Given two measures µ, ν with the same mass, it is thus possible to ask if there exists a γ such that ν =

γ#µ. We say that γ sends µ to ν. Moreover, one can add a cost to such γ, given by I [γ] := |µ|−1
∫
Rd |x−

γ(x)|p dµ(x). This means that each in�nitesimal mass δµ is sent to δν and that its in�nitesimal cost is
related to the p-th power of the distance between them. The, one can consider the map γ minimizing
such cost, if it exists. This is known as the Monge problem, stated by Monge in 1791.

In general, this procedure works only for special µ, ν and p. Indeed, there exist simple examples of
µ, ν for which a γ that sends µ to ν does not exist. For example µ = 2δ1, ν = δ0 +δ2 on the real line have
the same mass, but there exists no γ with ν = γ#µ, since γ cannot separate masses. Moreover, one can
have a sequence γn of maps such that I [γn] is a minimizing sequence, but the limit is not a map γ∗. A
simple condition that ensures the existence of a minimizing γ is that µ and ν are absolutely continuous
with respect to the Lebesgue measure.

For such reason, one can generalize the problem to the following setting. Given a probability measure
π on Rd × Rd, one can interpret it as a method to transfer a measure µ on Rd to another measure on
Rd as follows: each in�nitesimal mass on a location x is sent to a location y with a probability given by
π(x, y). Formally, µ is sent to ν if the following properties hold:

|µ|
∫
Rd
dπ(x, ·) = dµ(x), |ν|

∫
Rd
dπ(·, y) = dν(y). (2)

Such π is called a transference plan from µ to ν. We denote the set of such transference plans as
Π(µ, ν). Since one usually deals with probability measures µ, ν, the terms |µ|, |ν| are usually neglected
in the literature. A condition equivalent to (2) is that, for all f, g ∈ C∞c (Rd) it holds |µ|

∫
Rd×Rd(f(x) +

g(y)) dπ(x, y) =
∫
Rd f(x) dµ(x) +

∫
Rd g(y) dν(y). Then, one can de�ne a cost for π as follows J [π] :=∫

Rd×Rd |x − y|
p dπ(x, y) and look for a minimizer of J in Π(µ, ν). Such problem is called the Monge-

Kantorovich problem.
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It is important to observe that such problem is a generalization of the Monge problem. Indeed, given a
γ sending µ to ν, one can de�ne a transference plan π = (Id×γ)#µ, i.e. dπ(x, y) = µ(Rn)−1 dµ(x)δy=γ(x).
It also holds J [Id× γ] = I [γ]. The main advantages of such approach are the following: �rst, the exis-
tence of at least one π satisfying (2) is easy to check, since one can choose π(A×B) = |µ|−1 µ(A)ν(B),
i.e. the mass from µ is proportionally split to ν. Moreover, a minimizer of J in Π(µ, ν) always exists.

A natural space in which J is �nite is the space of Borel measures with �nite p-moment, that is

Mp :=

{
µ ∈M |

∫
|x|p dµ(x) <∞

}
.

In the following, we also denote with P the space of probability measures, i.e. the measures inM with
unit mass. We also deal with Pp :=Mp∩P, i.e. the space of probability measures with �nite p-moment.
One can thus de�ne on Mp the following operator between measures of the same mass, called the
Wasserstein distance:

Wp(µ, ν) = (|µ| min
π∈Π(µ,ν)

J [π])1/p.

It is indeed a distance on the subspace of measures inMp with a given mass, see [20]. It is easy to prove
that Wp(kµ, kν) = k1/pWp(µ, ν) for k ≥ 0, by observing that Π(kµ, kν) = Π(µ, ν) and that J [π] does
not depend on the mass. We will recall some other properties all along the paper, when useful.

1.2. De�nition of generalized Wasserstein distance

We are now ready to de�ne the generalized Wasserstein distanceW a,b
p (µ, ν). We �rst give a rough

description of the idea. Imagine to have three di�erent admissible actions on µ, ν: either add/remove
mass to µ, or add/remove mass to ν or transport mass from µ to ν. The three techniques have their
cost: add/remove mass has a unitary cost a (in both cases); transport of mass has the classic Monge-
Kantorovich cost J , multiplied by a �xed constant b. The distance is the minimal cost of a mix of such
techniques. We will show in the following that, depending on µ, ν, all mixes are possible: either remove
all the mass of µ and ν (if they are very far), or transport the whole µ to ν (if they have the same mass
and are close enough), or a mix of the two (for example when µ and ν are very close but with di�erent
masses). Instead, we will prove that add mass is never optimal.

Remark 3. The fact that the unitary cost of adding/removing mass is identical for the two terms µ, ν
is to ensure symmetry of W a,b

p .

We now formally de�ne the generalized Wasserstein distance.

De�nition 1. LetM be the space of Borel measures with �nite mass on Rd. Then, given a, b ∈ (0,∞)
and p ≥ 1, the generalized Wasserstein distance is

W a,b
p (µ, ν) = inf

µ̃, ν̃ ∈Mp

|µ̃| = |ν̃|

(a|µ− µ̃|+ a|ν − ν̃|+ bWp(µ̃, ν̃)) . (3)

Proposition 1. The operator W a,b
p is a distance. Moreover, one can restrict the computation in (3) to

µ̃ ≤ µ, ν̃ ≤ ν and the in�mum is always attained.

To prove this Proposition, we need to recall some known concepts and results related to tightness
and weak convergence. For more details, see [19,20].

We �rst recall results about tightness. We always deal with measures on Rd.

De�nition 2. A set of measures M is tight if for each ε > 0 there exists a compact Kε such that
µ(Rd \Kε) < ε for all µ ∈M .

Lemma 1. The following holds:

1. A measure with �nite mass is tight.
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2. A set of measures M such that all measures are bounded above by a tight measure µ̃ is tight.
3. The union of a �nite number of tight sets is tight. In particular, a �nite set of measures with �nite

mass is tight.

Proof. The �rst result is proved by taking a sequence of invading compacts {Kn}. Since µ(Rd) =
limn µ(Kn) =

∑∞
n=1 µ(Kn \Kn−1) <∞, then µ(Rd \Ki) =

∑∞
n=i+1 µ(Kn \Kn−1), as small as needed,

since it is the remainder of a converging sequence.
For the second property, for each ε take Kε that gives tightness of µ̃. Since µ ∈ M implies µ ≤ µ̃,

hence µ(Rd \Kε) < ε.
For the third result, take the sets M1, . . . ,Mn, each of them being tight. For each ε > 0, there exists

a corresponding compact Ki
ε such that for each µ ∈Mi satis�es µ(Rd \Ki

ε). Then, de�ne Kε = ∪ni=1K
i
ε,

that is compact because it is a �nite union of compacts. Now take µ ∈ ∪ni=1Mi and observe that µ ∈Mi

for some i, thus µ(Rd \Kε) ≤ µ(Rd \Ki
ε) < ε.

We now recall results about weak convergence and give some technical lemmas we use in the following.

Theorem 1 (Prokhorov's theorem). Let X be a Polish space. A set P in the space of probabilities
P(X) is precompact for the weak topology if and only if it is tight.

We recall that Rd is a Polish space (see a de�nition in [20]), thus Prokhorov's theorem can be applied in
our setting.

Theorem 2 (Weak compactness [7]). Let µn be a sequence of Radon measures in Rd with uniformly
bounded mass1, i.e. there exists M such that |µk| ≤ M for all k. Then there exists a subsequence µnj

and a Radon measure µ∗ such that µnj ⇀ µ∗.

From now on, we denote with the asterisk µ∗, c∗,... the limit (or the weak limit) of a sequence µn, cn,...

Lemma 2. Let µn, νn be two sequences of Borel measures such that µn(Rd) = νn(Rd) for each n. For
each n, let πn be a transference plan with marginals µn, νn. If we have µn ⇀ µ∗, νn ⇀ ν∗, πn ⇀ π∗ for
some µ∗, ν∗, π∗, then π∗ is a transference plan with marginals µ∗, ν∗.

Proof. The weak convergence of πn means that, for each f ∈ C∞c (Rd×Rd) we have
∫
f(x, y) dπn(x, y)→∫

f(x, y) dπ∗(x, y). In particular, choose f(x, y) = g(x) and observe that∫
g(x) dπ∗(x, y)←

∫
g(x) dπn(x, y) =

∫
g(x) dµn(x)→

∫
g(x) dµ∗(x).

By uniqueness of the limit, we have the proof for the marginal µ∗. Using f(x, y) = h(y), we have the
same for ν∗.

We are now ready to prove Proposition 1.
Proof of Proposition 1. The symmetry property W a,b

p (µ, ν) = W a,b
p (ν, µ) is evident.

We �rst prove that we can always restrict to µ̃ ≤ µ. De�ne

C(µ̃, ν̃) := a|µ− µ̃|+ a|ν − ν̃|+ bWp(µ̃, ν̃).

First assume that the in�mum of C is attained by µ̃ 6≤ µ and a certain ν̃. Let π ∈ Π(µ̃, ν̃) be the
transference realizing Wp(µ̃, ν̃). Let d be the Radon-Nikodym derivative f = Dµµ̃ and µ⊥ := µ̃− fµ the
orthogonal of µ̃ with respect to µ. De�ne µ̄ := min {f, 1}µ and ν̄ the image of µ̄ under π. Since µ̄ ≤ µ̃
and π ∈ Π(µ̃, ν̃), then ν̄ ≤ ν̃. Moreover, |ν̃ − ν̄| = |µ̃ − µ̄|, since |µ̃| = |ν̃|, |µ̄| = |ν̄| by construction.
Observe that

|µ− µ̃| =
∫
|1− f | dµ+ µ⊥(Rd) =

∫
1−f≥0

(1− f) dµ+

∫
1−f<0

(f − 1) dµ+ µ⊥(Rd) =

=

∫
f≤1

(dµ− dµ̄) +

(∫
f>1

(dµ̃− dµ̄)− µ⊥({f > 1})
)

+ µ⊥(Rd) ≥ |µ− µ̄|+ |µ̄− µ̃|.

1 The result in [7] is stated with a weaker condition, that is uniformly boundedness of mass on each compact.
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Hence

|µ− µ̄|+ |ν − ν̄| ≤ |µ− µ̃| − |µ̄− µ̃|+ |ν − ν̃|+ |ν̃ − ν̄| = |µ− µ̃|+ |ν − ν̃|. (4)

The fact that Wp(µ̄, ν̄) ≤Wp(µ̃, ν̃) is a direct consequence of the fact that π ∈ Π(µ̃, ν̃) can be restricted
to π′ ∈ Π(µ̄, ν̄), by construction of ν̄. Moreover, the cost of π′ is smaller2 that the cost of π. Using this
inequality and (4), we have that C(µ̄, ν̄) ≤ C(µ̃, ν̃). Since µ̄ ≤ µ, then the result is proven.

If the in�mum is not attained, consider a minimizing sequence µ̃n and construct each µ̄n := min {Dµµ̃
n, 1}µ,

that gives another minimizing sequence with µ̄n ≤ µ. By symmetry, the same property can be proved
for the term ν.

We now prove that the in�mum in (3) is always attained. To prove it, we restrict ourselves to
µ̃ ≤ µ, ν̃ ≤ ν. Take a sequence µ̃n, ν̃n such that C(µ̃n, ν̃n)→W a,b

p (µ, ν) and µ̃n ≤ µ, ν̃n ≤ ν. Since both
µ, ν ∈M have �nite mass, then {µ̃n}, {ν̃n} have both uniformly bounded masses. Thus, due to Theorem
2, passing to sub-sequences we have µ̃n ⇀ µ∗, ν̃n ⇀ ν∗. We now prove that C(µ∗, ν∗) ≤ limn C(µ̃n, ν̃n) =
W a,b
p (µ, ν). First recall that weak convergence gives |µ − µ∗| ≤ lim infn |µ − µ̃n| and equivalently for
|ν − ν∗|. We are left to prove that

Wp(µ
∗, ν∗) ≤ lim

n
Wp(µ̃

n, ν̃n). (5)

If µ∗ = ν∗ = 0, then we are done. Otherwise, the sequence cn := |µ̃n| = |ν̃n| (eventually passing to a
sub-sequence) converges to c∗ > 0. For n such that cn 6= 0, de�ne the probability measures µ̄n = c−1n µ̃n,
ν̄n = c−1n ν̃n. It is clear that µ̄n ⇀ µ̄∗ = (c∗)−1µ∗, and similarly for ν̄n. Denote with πn the optimal
transference plan in Π(µ̃n, ν̃n) = Π(µ̄n, ν̄n). Since µ̄n ≤ 1

sup cn
µ and ν̄n ≤ 1

sup cn
ν, then M := {µ̄n},

N := {ν̄n} are both tight, hence the set of transference plans Π(M,N) is tight (see e.g. [19, Lemma
4.4]). Hence, due to Prokhorov's theorem, up to sub-sequences we have πn ⇀ π∗ for some π∗. Using
Lemma 2, we have that π∗ is a transference plan with marginals µ̄∗ and ν̄∗ (not necessarily optimal).
Since the distance is non-negative, then the functional J : π →

∫
|x−y|p dπ(x, y) is lower semicontinuous

with respect to the weak topology, see [19, Lemma 4.3], thus

Wp(µ
∗, ν∗) = (c∗)1/pWp(µ̄

∗, ν̄∗) ≤ (c∗)1/pJ(π∗)1/p ≤ lim
n
c1/pn J(πn)1/p = lim

n
c1/pn Wp(µ̄

n, ν̄n) = lim
n
Wp(µ̃

n, ν̃n).

We now prove that W a,b
p (µ, ν) = 0 implies µ = ν. Since the in�mum is attained for some µ̃, ν̃, then

|µ− µ̃| = Wp(µ̃, ν̃) = |ν − ν̃| = 0 implies µ = µ̃ = ν̃ = ν.
We now prove triangle inequality W a,b

p (µ, η) ≤ W a,b
p (µ, ν) + W a,b

p (ν, η). Denote with µ̃, ν̃1 the

minimizers in (3) for W a,b
p (µ, ν) and ν̃2, η̃ the minimizers for W a,b

p (ν, η). Observe that we have ν̃1 6= ν̃2

in general. Also call π1, π2 the transference plans realizing Wp(µ̃, ν̃
1),Wp(ν̃

2, η̃), respectively. De�ne now
ν̄ := min

{
Dν̃2 ν̃1, 1

}
ν̃2. De�ne µ̄, η̄ the marginals of ν̄ with respect to π1, π2 respectively, i.e. π1 ∈ Π(µ̄, ν̄)

and π2 ∈ Π(ν̄, η̄). Thus we have π2 ◦π1 ∈ Π(µ̄, η̄). By construction, we have |µ̃− µ̄| = |ν̃1− ν̄|. Moreover,
Wp(µ̄, ν̄) ≤ Wp(µ̃, ν̃

1), because we use the same transference plan π1 with a smaller mass. Similar
properties hold for η̃, η̄. We thus have

W a,b
p (µ, η) ≤ a|µ− µ̄|+ a|η − η̄|+ bWp(µ̄, η̄) ≤

≤ a|µ− µ̃|+ a|µ̃− µ̄|+ a|η − η̃|+ a|η̃ − η̄|+ bWp(µ̄, ν̄) + bWp(ν̄, η̄) ≤
≤ a|µ− µ̃|+ a|ν̃1 − ν̄|+ a|η − η̃|+ a|ν̃2 − ν̄|+ bWp(µ̃, ν̃

1) + bWp(ν̃
2, η̃). (6)

De�ne f := Dν̃2 ν̃1 and ν̃1⊥ := ν̃1 − fν̃2 the orthogonal part of ν̃1 with respect to ν̃2. Observe that
both ν̃1, ν̃2 ≤ ν, hence Dν̃2ν ≥ max {f, 1} and ν⊥ := ν − (Dν̃2ν)ν̃2 satis�es ν⊥ ≥ ν̃1⊥. Then one has

|ν̃1 − ν̄| =
∫

(f −min {f, 1}) dν̃2 + ν̃1⊥(Rd) =

∫
f≥1

(f − 1)dν̃2 +

∫
f<1

0 dν̃2 + ν̃1⊥(Rd) =

=

∫
f≥1

(max {f, 1} − 1) dν̃2 + ν̃1⊥(Rd) ≤
∫
f≥1

(dν − dν̃2) + ν⊥(Rd) = |ν − ν̃2|,

and similarly |ν̃2 − ν̄| ≤ |ν̃ − ν̃1|. Plugging them into (6), one has the proof. �
One interesting feature of this distance is that the | · | term and the Wassertein term Wp have

di�erent degree of homogeneity with respect to translation in Rn, thus the optimal strategy for W a,b
p

2 Theorem 4.6 in [19] also shows that π′ is optimal, but this is not crucial here.
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varies when translating one measure. For example, computeW a,b
p (δ0, δx) as a function of x ≥ 0. We have

|δ0 − δx| = 2 and Wp(δ0, δx) = x. Hence W a,b
p (δ0, δx) = min {2a, bx}. If 2a < bx, i.e. measures are �far�,

then the optimal strategy is to delete both masses δ0 and δx, otherwise it is optimal to move δ0 to δx
with a translation.

Another simple example permits us to show that optimal strategies can be either based on removing
mass only (L1 strategy), or on transporting mass only (Wp strategy), or by a mix of them. We give
an example in Figure 1. Take the measures µ, ν on the real line with densities dµ = χ[−1,0] dλ, dν =
χ[x,1+x] dλ with x ≥ 0, where λ is the Lebesgue measure. It is clear that the optimal strategy amounts to
choose µ̃, ν̃ with densities χ[−y,0], χ[x,x+y] respectively, for a certain parameter y ∈ [0, 1]. The L1 strategy
is given by choosing y = 0, while theWp strategy is given by y = 1. We now prove that all values of y can
be optimal, depending on x and the parameters a, b, p. We have |µ− µ̃| = |ν− ν̃| = 1− y and Wp(µ̃, ν̃) =
|y|1/p(x+ y). We choose for simplicity a = b = p = 1. Thus W a,b

p (µ, ν) = miny∈[0,1] 2− 2y + xy + y2. A

simple computation shows that the minimum is attained by y = 2−x
2 if x ∈ [0, 2], and y = 0 for x ≥ 2.

This clearly shows that if the measures are very close (x = 0), then the best strategy is the Wp (since
y = 1), while for measures that are far (x big) the best strategy is the L1. As stated above, varying
x ∈ (0, 2) one has mixed strategies.

µ

−1 0

µ̃

−y

ν

x 1 + x

ν̃

x+ y

mass transportation

Fig. 1. Choice of µ̃, ν̃ (shaded) for the computation of W a,b
p .

We now state some simple properties of W a,b
p .

Proposition 2. The following properties hold:

� W a,b
p (kµ, kν) ≤ max

{
k1/p, k

}
W a,b
p (µ, ν) for k ≥ 0,

� W a,b
p (µ1 + µ2, ν1 + ν2) ≤W a,b

p (µ1, ν1) +W a,b
p (µ2, ν2).

� a
∣∣∣|µ| − |ν|∣∣∣ ≤W a,b

p (µ, ν) ≤ a(|µ|+ |ν|)

Proof. The �rst two properties are direct consequences of similar properties for | · | and Wp.

For the third, we �rst prove the inequality a
∣∣∣|µ| − |ν|∣∣∣ ≤ W a,b

p (µ, ν). Without loss of generality, we

assume |µ| ≥ |ν|. Take any µ̃ ≤ µ, ν̃ ≤ ν and observe that |µ− µ̃| = |µ| − |µ̃|, and similarly for ν, ν̃. Also
recall that |µ̃| = |ν̃| ≤ |ν| by construction. Now choose µ̃ ≤ µ, ν̃ ≤ ν realizing W a,b

p (µ, ν) and observe
that

W a,b
p (µ, ν) ≥ a|µ− µ̃|+ a|ν − ν̃| = a (|µ| − |µ̃|+ |ν| − |ν̃|) ≥ a (|µ| − |ν|+ 0) .

We now prove the inequality W a,b
p (µ, ν) ≤ a(|µ| + |ν|). Choose µ̃ = ν̃ = 0 and observe that C(0, 0) =

a(|µ|+ |ν|). Since W a,b
p is the in�mum on all µ̃, ν̃, we have the inequality.

1.3. Topology of the generalized Wasserstein distance

In this section, we prove thatW a,b
p metrizes weak convergence for tight sequences. We also prove that

Rd is complete with respect to W a,b
p .

We �rst prove a simple lemma for W a,b
p , stating that optimal choices µ̃, ν̃ are very close to each other

in Rd. The basic idea is that, if we want to transfer far mass between µ̃ and ν̃, then it is cheaper to
remove such masses from both measures.
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Proposition 3. Let µ, ν ∈M and µ̃, ν̃ be the choices realizing W a,b
p (µ, ν). If µ̃ has support contained in

a compact K, then ν̃ has bounded support, contained in the enlarged compact

Kd := ∪x∈KB(x, d) (7)

with d = 2a
b . Here we denote with B(x, r) the closed ball centered in x with radius r.

Similarly, let µ̃, ν̃ be the choices realizing W a,b
p (µ, ν), and π the transference plan realizing Wp(µ̃, ν̃).

Let µ′ ≤ µ̃ have support contained in a compact K. Then the corresponding marginal ν′ with respect to
π has compact support contained in Kd.

Proof. We prove the second statement, since the �rst can be recovered by choosing µ′ = µ̃.
With the notations given in the statement, we prove that the support of ν′ is contained in Kd, by

contradiction. Assume that there exists d′ > d and a Borel set D ⊂ Rd \Kd′ such that ν′(D) > 0. Thus
de�ne ν̄ := kν′|D with k ≤ 1 chosen in such a way that ν̄(D) < 1. Observe that ν̄ ≤ ν′ ≤ ν̃. De�ne
ν∗ := ν̃ − ν̄ ≤ ν̃ and µ∗ the corresponding marginal given by π. We now prove that the choice µ∗, ν∗ in
(3) gives a cost that is strictly less than the optimal choice µ̃, ν̃. First observe that

|µ− µ∗|+ |ν − ν∗| = |µ− µ̃|+ |µ̃− µ∗|+ |ν − ν̃|+ |ν̃ − ν∗| =
= |µ− µ̃|+ |ν − ν̃|+ 2|ν̃ − ν∗| = |µ− µ̃|+ |ν − ν̃|+ 2|ν̄|. (8)

Now observe that W p
p (µ̃, ν̃) = W p

p (µ∗, ν∗) +W p
p (µ̃−µ∗, ν̃−ν∗), by construction of µ∗, ν∗ via the optimal

transference plan π. Observe that supp(µ̃ − µ∗) ⊆ supp(µ′) ⊆ K and that supp(ν̃ − ν∗) = supp(ν̄) ⊆
D ⊆ Rd \Kd′ . In particular, if x ∈ supp(µ̃ − µ∗), y ∈ supp(ν̃ − ν∗), then |x − y| ≥ d′. Thus, given the
optimal transference plan π′ ∈ Π(µ̃− µ∗, ν̃ − ν∗), we have

W p
p (µ̃− µ∗, ν̃ − ν∗) =

∫
|x− y|pdπ′(x, y) ≥

∫
d′p d(ν̃ − ν∗) = |ν̄|d′p. (9)

Putting together (8) and (9), and using |ν̄|1/p ≥ |ν̄| since |ν̄| ≤ 1, we have

C (µ∗, ν∗) ≤ a|µ− µ̃|+ a|ν − ν̃|+ 2a|ν̄|+ bWp(µ̃, ν̃)− bWp(µ̃− µ∗, ν̃ − ν∗) ≤

≤ a|µ− µ̃|+ a|ν − ν̃|+ bWp(µ̃, ν̃) + 2a|ν̄| − bd′|ν̄|1/p ≤ C(µ̃, ν̃)− b
(
d′ − 2

a

b

)
|ν̄| < C(µ̃, ν̃).

Thus µ̃, ν̃ is not optimal. Contradiction. Thus supp(ν′) ⊆ Kd′ for all d′ > d, hence supp(ν′) ⊆ Kd.

We now prove the following convergence theorem, stating that W a,b
p metrizes weak convergence for

tight sequences.

Theorem 3. Let {µn} be a sequence of measures in Rd, and µn, µ ∈M. Then

W a,b
p (µn, µ)→ 0 is equivalent to µn ⇀ µ and {µn} is tight.

Proof. Fix the following notation: for each n, let µ̃n, ν̃n be optimal choices in (3) for W a,b
p (µn, µ) with

µ̃n ≤ µn, ν̃n ≤ µ, and πn the transference plan realizing Wp(µ̃n, ν̃n).
We �rst prove ⇐. Fix ε > 0. Let N be such that W a,b

p (µn, µ) < ε for all n > N . Since {µn} is tight,
then the set M := {µn} ∪ {µ} is tight too. Given δ > 0, consider the corresponding Kδ giving tightness
ofM . By de�nition, all m ∈M satisfy m(Rd \Kδ) < δ. Due to weak convergence of µn to µ, we also have

µn(Kδ)→ µ(Kδ). Choose N
′ such that

∣∣∣|µn(Kδ)|−|µ(Kδ)|
∣∣∣ < ε for all n > N ′. It means that there exists

νn (positive or negative, supported in Kδ) such that (µn + νn)(Kδ) = µ(Kδ). De�ne µ̃n := (µn + νn)|Kδ
and µ̃ := µ|Kδ . It is clear that νn ⇀ 0, hence µ̃n ⇀ µ̃. Since Kδ has bounded diameter and Wp metrizes

weak convergence in bounded spaces (see [20, 7.12], recalled below in Theorem 4), then Wp(µ̃n, µ̃)→ 0.
Take N > N ′ such that Wp(µ̃n, µ̃) < δ and |νn| < δ for all n > N . We now estimate

W a,b
p (µn, µ) ≤ C(µ̃n, µ̃) = a|µn − µ̃n|+ a|µ− µ̃|+ bWp(µ̃n, µ̃) <

< a|µn(Rd \Kδ)|+ a|νn|+ a|µ(Rd \Kδ)|+ bδ < (3a+ b)δ.

Choose δ = ε/(3a+ b) and have the result.
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We now prove ⇒. As a �rst, main step, we prove that W a,b
p (µn, µ) → 0 implies that {µn} is

tight. Fix now ε > 0. There exists a corresponding N such that W a,b
p (µn, µ) < ε for all n > N , and a

compact Kε such that µ(Rd \ Kε) < ε, since µ is tight. De�ne ν′n := ν̃n restricted to Kε, and µ′n the
corresponding measure given by the transference plan πn realizing Wp(µ̃n, ν̃n). Using Proposition 3, we
have that the support of µ′n is contained in Kd

ε with d = 2ab . Observe that such set does not depend on
n. By construction, we have

|µ̃n − µ′n| = |µ̃n| − |µ′n| = |ν̃n| − |ν′n| = ν̃n(Rd \Kε) < ε.

We now estimate

µn(Rd \Kd
ε ) ≤ |µn − µ̃n|+ µ̃n(Rd)− µ̃n(Kd

ε ) ≤ 1

a
W a,b
p (µn, µ) + |µ̃n| − |µ′n| ≤

ε

a
+ ε.

This is the tightness of {µn}n>N . Observe now that the �nite set of measures {µ1, . . . , µN} with �nite
masses is tight. Since a �nite union of tight sets is tight, we have that {µn} is tight.

We now observe that |µn| ≤ |µ|+ 1
aWp(µn, µ) by Proposition 2, that is a converging sequence of real

numbers, thus µn have uniformly bounded mass. We now apply Theorem 2, that gives weak conver-
gence of µn to a certain µ∗. We prove that µ = µ∗. Using the implication⇐, we haveW a,b

p (µn, µ
∗)→ 0.

Thus W a,b
p (µ, µ∗) ≤ limnW

a,b
p (µ, µn) +W a,b

p (µn, µ
∗) = 0, hence µ = µ∗.

It is interesting to compare such result with a similar result for the standard Wasserstein distance,
that we recall here.

Theorem 4. [20, 7.12] Let µk be a sequence of probability measures in Pp, and µ ∈ P. Then the following
statements are equivalent:

� Wp(µk, µ)→ 0;
� µk ⇀ µ and the following condition holds

lim
R→∞

lim sup
k

∫
|x|>R

|x|p dµk(x) = 0; (10)

� µk ⇀ µ and the p-moment converges, i.e.∫
|x|p dµk(x)→

∫
|x|p dµ(x). (11)

Condition (10) is called �tightness� condition, a notation that could create some confusion with respect
to De�nition 2. Anyway, we remark that condition (10) is stronger than De�nition 2, thus our Theorem
3 applies on a wider class than Theorem 4. First of all, Theorem 4 applies for measures that have all the
same mass, otherwiseWp(µk, µ) is not de�ned. Moreover, even taking a sequence of probability measures
µk, one can have convergence in W a,b

p and no convergence in Wp. This occurs exactly in the case in
which {µk} is tight according to De�nition 2 and not according to condition (10). For example, take the
following sequence of probability measures: µk := (1 − k−p)δ0 + k−p δk. It is clear that such sequence
converges weakly to µ∗ = δ0, and that Wp(µk, µ

∗) = Wp(k
−p δ0, k

−p δk) = k−1
∫
kp δ0 = kp−1 6→ 0.

Indeed, condition (11) is not satis�ed, since the p-moment of µ∗ is 0, while the p-moment of µk is 1.
Similarly, condition (10) is not satis�ed, since for each R the measures µk with k > R satisfy

∫
|x|>R dµk =

k−p
∫
|x|>R k

p δk = 1 6→ 0. Instead, estimateW a,b
p (µk, µ

∗) by choosing µ̃k = µk−k−p δk, µ̃∗ = µ∗−k−p δ0,
that gives W a,b

p (µk, µ
∗) = a|k−p δk|+ a|k−p δ0| = 2k−p → 0. Thus, {µk} is tight according to De�nition

2, as it is easy to prove by observing that µk(R \ [−n, n]) < n−p.
It is clear that, on the contrary, if {µk} satis�es (10), then it satis�es De�nition 2. Indeed, let {µk}

satisfy (10). For each ε > 0 there exist R,m such that
∫
|x|>R |x|

p dµk < ε for all k > m. One can always

assume R > 1. Thus µk(Rn \B(0, R)) < ε for all k > m, that ensures tightness of {µk}.

We now prove completeness ofM.

Proposition 4.M is complete with respect to W a,b
p .
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Proof. Take a sequence µn that is Cauchy with respect to W a,b
p . We �rst show that {µn} is tight. Fix

δ > 0 and let N be such that W a,b
p (µn, µn+k) < δ for all n ≥ N, k ≥ 0. Fix the notation µ̃k, ν̃k to

denote the choices in (3) realizing the minimizer W a,b
p (µN , µN+k), and πk the transference plan realizing

Wp(µ̃k, ν̃k). Let Kδ be such that µN (Rd \Kδ) < δ, that exists since µN has �nite mass. Since µ̃k ≤ µN ,
then µ̃k(Rd \Kδ) < δ. De�ne now µ′k the restriction of µ̃k to Kδ and ν

′
k the corresponding marginal with

respect to πk. Using Proposition 3, we have that supp(ν′k) ⊆ Kd
δ with d = 2a

b .
As a consequence ν̃k(Kd

δ ) ≥ ν′k(Kd
δ ) = µ′k(Kδ) = µ̃k(Kδ). Since µ̃k(Rd) = ν̃k(Rd) by construction,

we have ν̃k(Rd \ Kd
δ ) ≤ µ̃k(Rd \ Kδ) < δ. Since a|µN+k − ν̃k| ≤ W a,b

p (µN , µN+k) < δ, we have that

µN+k(Rd \Kd
δ ) ≤ ν̃k(Rd \Kd

δ ) + δ/a < δ + δ/a. Choose δ = ε
1+1/a and K ′ε = Kd

δ , then µn(Rd \K ′ε) < ε

for n ≥ N . Thus, we have tightness for n ≥ N . Since {µ1, . . . , µN} is a �nite family of measures with
�nite mass, then it is tight, hence the whole {µn} is tight.

Observe that {µn} has also uniformly bounded mass, thus there exists a subsequence µnk ⇀ µ∗ for
a certain µ∗, due to Theorem 2. Using Theorem 3, we have that W a,b

p (µnk , µ
∗) → 0, and by triangular

inequality we have W a,b
p (µn, µ

∗)→ 0.

1.4. Comparison with other distances

In this section, we compare W a,b
p with two distances proposed in the literature, namely the Levy-

Prokhorov distance (see e.g. [20]) and the distance Wb2 de�ned in [9] by A. Figalli and N. Gigli.
We �rst recall the de�nition of the Levy-Prokhorov distance dLP between two probability measures

µ, ν:

dLP (µ, ν) := inf {α > 0 such that for any closed A it holds µ(A) ≤ ν(Aα) + α} ,

where Aα is the enlarged set Aα := ∪x∈AB(x, α). It is clear that the two terms ν(Aα) and α represent
a Wp perturbation and a L1 perturbation, respectively. For such reason, there are some common ideas
between dLP and W a,b

p .
The main di�erence here is that dLP was de�ned for probability measures only, while we deal with

measures with di�erent (�nite) masses. Nevertheless, even restricting to the space of probability measures,
the two distances have di�erent values. We study a remarkable case, that is the distance between µ = δ0
and ν = 1

2δ−d1 + 1
2δd2 on the real line. We study the values of dLP and W a,b

p as functions of d1, d2. For

both distances, the goal is to choose the optimal coupling, on one side between 1
2δ0 and 1

2δ−d1 , and on
the other side between 1

2δ0 and 1
2δd2 .

We now compare dLP with W a,b
p of parameters a = 1

2 , b = 1. Without loss of generality, we assume
d1 ≤ d2. The set of di�erent cases is the following:

� The two masses 1
2δ−d1 ,

1
2δd2 are both �far� from δ0. The best choice for both couplings is to focus on

L1 distance. For the dLP , it means that d1 ≥ 1. In this case dLP (µ, ν) = 1. For W a,b
p , it means that

d1 ≥ 2a
b = 1. In this case W a,b

p (µ, ν) = C (0, 0) = 1.
� One of the masses is �close� and the other is �far�. This means that d1 ≤ 1 ≤ d2. In this case, we

use the Wp distance for the coupling
1
2δ0,

1
2δ−d1 and the L1 distance for the coupling

1
2δ0,

1
2δd2 . Thus

dLP (µ, ν) = sup
{

1
2 , d1

}
and W a,b

p (µ, ν) = C
(
1
2δ0,

1
2δ−d1

)
= 1

2 + 2−1/pd1.

� Both masses are �close, but one is not very close�. This is true for 1
2 ≤ d2 ≤ 1. In this case, the

optimal strategies are di�erent for the two distances:
� for dLP , we use the Wp distance for the coupling

1
2δ0,

1
2δ−d1 and the L1 distance for the coupling

1
2δ0,

1
2δd2 . Thus dLP (µ, ν) = sup

{
1
2 , d1

}
.

� forW a,b
p we use theWp distance for both couplings. This givesW a,b

p (µ, ν) = C(µ, ν) = Wp(µ, ν) =(
dp1+d

p
2

2

)1/p
.

� Both masses are �very close�. This is the case of d2 ≤ 1
2 . For both distance the best choice is to use

the Wp distance. Thus dLP (µ, ν) = d2 and W a,b
p (µ, ν) = C(µ, ν) = Wp(µ, ν) =

(
dp1+d

p
2

2

)1/p
.

It is easy to prove that the two distances dLP ,W
a,b
p are equivalent as norms on the space (d1, d2). More-

over, they have the same level lines around d1 = 0, d2 = 0 when choosing p =∞.
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We now recall the distance Wb2 de�ned in [9]. Such distance is de�ned on a subset Ω with non-empty
boundary ∂Ω. The idea is that such boundary is an in�nite reserve of mass, in the following sense. Given
two measures µ, ν, even with di�erent masses, one can either send a part of mass of µ to ν or to the
boundary ∂Ω. Similarly, the mass of ν that does not receive mass from µ goes to the boundary ∂Ω. In
both cases, the cost is computed via the Wasserstein distance, either from µ to ν or from µ to ∂Ω.

This cost is based on an approach that is rather di�erent than ours. First of all, it deals with a space
Ω that has boundary, otherwise one could not deal with measures with di�erent masses. Moreover, the
cost of sending mass to the boundary (that is similar to delete mass in our approach) is computed as a
Wasserstein distance and not with L1, like in our case.

1.5. Estimates of generalized Wasserstein distance under �ow actions

In this section, we study properties ofW a,b
p when restricted toMac

0 . In particular, we are interested in

estimates about the variation of W a,b
p (µ, ν) under action of �ows on µ, ν. These Gronwall-like properties

will be useful for the study of solutions of (1).
We �rst recall a connection between �ows actions on measures and transport equation. Take a Lip-

schitz vector �eld v, that generates a �ow Φvt for t ≥ 0. The �ow is a di�eomorphism for the space Rd,
thus one can de�ne µt := Φvt#µ0 for a given measure µ0. One has the following theorem.

Theorem 5. Take a Lipschitz vector �eld v, and the �ow Φvt it generates. Given µ0 ∈ Mac
0 , and µt :=

Φvt#µ0, then µ = µ[0,T ] is the unique solution of the linear transport equation{
∂tµt +∇ · (vµt) = 0

µ|t=0
= µ0

(12)

in C ([0, T ],Mac
0 ), whereMac

0 is endowed with the weak topology.

Proof. The proof is a direct consequence of [20, Thm 5.34]. See details in [14].

To study (1) in the setting of the generalized Wasserstein distance, it is interesting to check the
evolution of W a,b

p under �ow action. We �rst recall here some properties about standard Wasserstein
distance, that we proved in [14]. Here, we emphasize the fact that the Wasserstein distance is computed
between two measures µ, ν with same mass, in general di�erent than 1.

Proposition 5. Given v, w bounded and Lipschitz vector �elds of Lipschitz constant L and µ, ν ∈Mac
0 ,

the following holds:

1. Wp(Φ
v
t#µ, Φ

v
t#ν) ≤ e

p+1
p LtWp(µ, ν),

2. Wp(µ, Φ
v
t#µ) ≤ t ‖v‖C0µ(Rd)1/p,

3. Wp(Φ
v
t#µ, Φ

w
t #ν) ≤ e

p+1
p LtWp(µ, ν) + µ(Rd)1/p e

Lt/p(eLt−1)
L ‖v − w‖C0 .

We now prove similar properties for the generalized Wasserstein distance.

Proposition 6. Given v, w bounded and Lipschitz vector �elds of Lipschitz constant L, the following
holds:

1. W a,b
p (Φvt#µ, Φ

v
t#ν) ≤ e

p+1
p LtW a,b

p (µ, ν),

2. W a,b
p (µ, Φvt#µ) ≤ t ‖v‖C0µ(Rd)1/p,

3. W a,b
p (Φvt#µ, Φ

w
t #ν) ≤ e

p+1
p LtW a,b

p (µ, ν) + µ(Rd)1/p e
Lt/p(eLt−1)

L ‖v − w‖C0 .

Proof. For the �rst property, take µ̃, ν̃ realizing (3) for W a,b
p (µ, ν) with µ̃ ≤ µ, ν̃ ≤ ν. Then

W a,b
p (Φvt#µ, Φ

v
t#ν) ≤ a|Φvt#µ− Φvt#µ̃|+ a|Φvt#ν − Φvt#ν̃|+ bWp(Φ

v
t#µ̃, Φ

v
t#ν̃) ≤

≤ a|µ− µ̃|+ a|ν − ν̃|+ be
p+1
p LtWp(µ̃, ν̃) ≤ e

p+1
p Lt (a|µ− µ̃|+ a|ν − ν̃|+ bWp(µ̃, ν̃)) .

The proofs of the second and the third properties are equivalent, based on proofs of Proposition 5 given
in [14].
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2. Existence and uniqueness of solutions of (1)

In this section we prove the existence and uniqueness of the solution of (1), under the hypothesis
(H). The key tool is the construction of a candidate solution by sample-and-hold; we then prove that it
is indeed a solution, and �nally prove that it is unique.

2.1. Construction of an approximated solution

In this section, we apply the sample-and-hold method to construct a sequence of functions in C ([0, T ],Mac
0 )

such that the limit exists and it is a solution of (1). With no loss of generality, we assume that the T = 1.
We �rst de�ne an approximated solution µk for each k ∈ N. Given a �xed k, de�ne ∆t := 1

2k
and

consider the decomposition of the time interval in [0, ∆t] , [∆t, 2∆t] , [2∆t, 3∆t] , . . . ,
[
(2k − 1)∆t, 2k∆t

]
.

The idea is based on a Lagrangian scheme with the time-discretization provided above. In particular,
we de�ne a solution for each time n∆t, then consider that v and h are computed at this time and �xed
on the next interval [n∆t, (n+ 1)∆t). More precisely, for a �xed k, we de�ne

� µk0 := µ0;

� µk(n+1)∆t := Φ
v[µkn∆t]
∆t #µkn∆t +∆th

[
µkn∆t

]
;

� µkt := Φ
v[µkn∆t]
τ #µkn∆t+τ h

[
µkn∆t

]
with n the maximum integer such that t−n∆t ≥ 0 and τ := t−n∆t.

We now prove that, given v, h satisfying (H), the sequence µk is a Cauchy sequence for the space
(C([0, 1] ,M),D), where

D(µ, ν) := sup
t∈[0,1]

W a,b
p (µt, νt) .

Since we have proved that (M,W a,b
p ) is a complete space, then also (C([0, 1] ,M),D) is complete. Observe

that we deal with the wholeM to have completeness, and that we will subsequently prove that the limit
is indeed an element ofMac

0 .
We �rst make three simple observation:

� At each time t ∈ [0, 1], the mass µkt (Rd) is bounded. Indeed, �rst observe that

µk(n+1)∆t(R
d) ≤ Φ

v[µkn∆t]
∆t #µkn∆t(Rd) +∆th

[
µkn∆t

]
(Rd) ≤ µkn∆t(Rd) +∆tP.

As a consequence, we have

µkt (Rd)1/p ≤ m, with m := (µ0(Rd) + P )1/p.

This holds for all k, t. We use such constant in the following estimates.

� Given a �xed k, the evolution of the scheme satis�es W a,b
p

(
µk(n+1)∆t, µ

k
n∆t

)
≤ ∆tMm + ∆tP , and

more in general

W a,b
p

(
µkt , µ

k
s

)
≤ |t− s|(Mm+ P ).

� We will use in the following the estimate

W a,b
p

(
µk+1
(n+ 1

2 )∆t
, µkn∆t

)
≤ W a,b

p

(
µk+1
(n+ 1

2 )∆t
, µk+1
n∆t

)
+W a,b

p

(
µk+1
n∆t, µ

k
n∆t

)
≤

≤ ∆t
2 (Mm+ P ) +W a,b

p

(
µk+1
n∆t, µ

k
n∆t

)
, (13)

that is a simple consequence of Proposition 6-2.

We now estimate the distance W a,b
p

(
µk+1
(n+1)∆t, µ

k
(n+1)∆t

)
with respect to W a,b

p

(
µk+1
n∆t, µ

k
n∆t

)
, i.e. the

evolution of W a,b
p at the discretization points of the Lagrangian scheme for µk.

We use the following compact notations:

Vjm := Φ
v[µjm∆t]
∆t/2 Hjm := h

[
µjm∆t

]
.

12



We have

W a,b
p

(
µk+1
(n+1)∆t, µ

k
(n+1)∆t

)
=

= W a,b
p

(
Vk+1
n+ 1

2

#
(
Vk+1
n #µk+1

n∆t + ∆t
2 Hk+1

n

)
+ ∆t

2 Hk+1
n+ 1

2

,Vkn#Vkn#µkn∆t + ∆t
2 Hkn + ∆t

2 Hkn
)
≤

≤ W a,b
p

(
Vk+1
n+ 1

2

#Vk+1
n #µk+1

n∆t,V
k
n#Vkn#µkn∆t

)
+ ∆t

2 W
a,b
p

(
Vk+1
n+ 1

2

#Hk+1
n ,Hkn

)
+ ∆t

2 W
a,b
p

(
Hk+1
n ,Hkn

)
.

We estimate the three parts using Proposition 6. Estimates will be given for su�ciently large k, i.e. for
su�ciently small ∆t. Moreover, to simplify the notation, we write estimates that hold for all p ≥ 1. We
estimate the �rst term as follows:

W a,b
p

(
Vk+1
n+ 1

2

#Vk+1
n #µk+1

n∆t,V
k
n#Vkn#µkn∆t

)
≤

≤ (1 + 2L∆t)W a,b
p

(
Vk+1
n #µk+1

n∆t,V
k
n#µkn∆t

)
+m(1 + L∆t)∆t‖v

[
µk+1
(n+ 1

2 )∆t

]
− v

[
µkn∆t

]
‖C0 ≤

≤ (1 + 2L∆t)
(
(1 + 2L∆t)W a,b

p

(
µk+1
n∆t, µ

k
n∆t

)
+m∆t(1 + L∆t)‖v

[
µk+1
n∆t

]
− v

[
µkn∆t

]
‖C0

)
+

+m∆t(1 + L∆t)N
(
∆t
2 (Mm+ P ) +W a,b

p

(
µk+1
n∆t, µ

k
n∆t

))
≤

≤ (1 + (5L+ 4mN)∆t)W a,b
p

(
µk+1
n∆t, µ

k
n∆t

)
+mN(Mm+ P )∆t2.

The second term is estimated as follows, using (13):

W a,b
p

(
Vk+1
n+ 1

2

#Hk+1
n ,Hkn

)
≤W a,b

p

(
Vk+1
n+ 1

2

#Hk+1
n ,Hk+1

n

)
+W a,b

p

(
Hk+1
n ,Hkn

)
≤ ∆t

2 MP +QW a,b
p

(
µk+1
n∆t, µ

k
n∆t

)
The third term is simply estimated by W a,b

p

(
Hk+1
n ,Hkn

)
≤ QW a,b

p

(
µk+1
n∆t, µ

k
n∆t

)
. Summing up, we have

W a,b
p

(
µk+1
(n+1)∆t, µ

k
(n+1)∆t

)
≤ (1 + C1∆t)W

a,b
p

(
µk+1
n∆t, µ

k
n∆t

)
+ C2∆t

2

with C1 := 5L+4mN+Q, C2 := mN(Mm+P )+ MP
4 , both independent on k, n. Applying it recursively

in n and recalling that W a,b
p

(
µk+1
0 , µk0

)
= 0, we have

W a,b
p

(
µk+1
n∆t, µ

k
n∆t

)
≤ C2∆t

2 (1 + C1∆t)
n − 1

1 + C1∆t− 1
≤ 2nC2∆t

2. (14)

We use such estimate to prove the convergence of µkt for each t ∈ [0, 1]. We study the three following
cases:

t = 1: it corresponds to n = ∆t−1. Applying the triangular inequality and (14), we have

W a,b
p

(
µk1 , µ

k+l
1

)
≤ 2C2

(
1

2k
+

1

2k+1
+ . . .+

1

2k+l

)
≤ 4C2

2k
.

Thus, µk1 is a Cauchy sequence in a complete space, hence it is convergent.
t = r

2l for some r, l integers: Consider µkt starting from k = l and apply estimates similar to the previous
case.

any t ∈ [0, 1]: For each k, let nk be the maximum integer such that t− nk∆t ≥ 0. We have

W a,b
p

(
µkt , µ

k+l
t

)
≤ W a,b

p

(
µkt , µ

k
nk2−k

)
+W a,b

p

(
µknk2−k , µ

k+l
nk2−k

)
+W a,b

p

(
µk+l
nk+l2−k−l

, µk+lt

)
≤

≤ 2−k(Mm+ P ) +W a,b
p

(
µknk2−k , µ

k+l
nk2−k

)
+ 2−k(Mm+ P ).

The �rst and third term are converging with respect to k, uniformly in l. The same holds for the
second term, as proved at the previous step.
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2.2. Existence and uniqueness of the solution

In this section we prove that the measure µ̄t := limk µ
k
t given as a limit of the sequence of the

Lagrangian scheme is indeed a weak solution of (1). We will then prove that it is unique.
First observe that µ̄t exists, since it is the limit of a Cauchy sequence in (M,W a,b

p ), that is complete.

It is evident that, since µk0 = µ0 for all k, then µ̄0 = µ0. We have now to prove that, for each f ∈
C∞c ((0, 1)× Rd), it holds ∫ 1

0

dt

∫
Rd

(dµ̄t (∂tf + v [µ̄t] · ∇f) + dh [µ̄t] f) = 0 (15)

The idea is to use again µk. First of all, we recall the solution of the continuity equation with time-
independent v or h and with the other part (h or v respectively) being identically zero. For h ≡ 0,
the solution of (1) with time-independent v is µt = Φvt#µ0. For v ≡ 0, the solution of (1) with time-
independent h is µt = µ0 + t h. This gives

2k−1∑
n=0

∫ (n+1)∆t

n∆t

dt

∫
Rd
dµkt

(
∂tf + v

[
µkn∆t

]
· ∇f

)
+ dh

[
µkn∆t

]
f =

2k−1∑
n=0

∫ (n+1)∆t

n∆t

dt

∫
Rd

(
d

(
Φ
v[µkn∆t]
t−n∆t #µkn∆t + (t− n∆t)h

[
µkn∆t

]) (
∂tf + v

[
µkn∆t

]
· ∇f

)
+ dh

[
µkn∆t

]
f

)
=

=

2k−1∑
n=0

∫ (n+1)∆t

n∆t

dt

∫
Rd
d

(
Φ
v[µkn∆t]
t−n∆t #µkn∆t

)(
∂tf + v

[
µkn∆t

]
· ∇f

)
+

+

2k−1∑
n=0

∫ (n+1)∆t

n∆t

dt

(
(t− n∆t)

∫
Rd
dh
[
µkn∆t

]
∂tf +

∫
Rd
dh
[
µkn∆t

]
f

)
+

+

2k−1∑
n=0

∫ (n+1)∆t

n∆t

dt(t− n∆t)
∫
Rd
dh
[
µkn∆t

]
v
[
µkn∆t

]
· ∇f =

= 0 + 0 +

2k−1∑
n=0

∫ (n+1)∆t

n∆t

dt(t− n∆t)
∫
Rd
dh
[
µkn∆t

]
v
[
µkn∆t

]
· ∇f.

Due to the boundedness of h, v,∇f , it exists C3 such that
∣∣∣ ∫Rd dh [µkn∆t] v [µkn∆t] · ∇f(t, .)

∣∣∣ ≤ C3, that

gives

∣∣∣ lim
k

2k−1∑
n=0

∫ (n+1)∆t

n∆t

dt(t− n∆t)
∫
Rd
dh
[
µkn∆t

]
v
[
µkn∆t

]
· ∇f

∣∣∣ ≤
≤ lim

k
C3

2k−1∑
n=0

∫ (n+1)∆t

n∆t

dt(t− n∆t) = C3 2k
∆t2

2
= 0

Going back to prove (15), we prove equivalently that

limk

∣∣∣∣∫ 1

0

dt

∫
Rd

(dµ̄t (∂tf + v [µ̄t] · ∇f) + dh [µ̄t] f) +

−
2k−1∑
n=0

∫ (n+1)∆t

n∆t

dt

∫
Rd
dµkt

(
∂tf + v

[
µkn∆t

]
· ∇f

)
+ dh

[
µkn∆t

]
f

∣∣∣∣∣∣ = 0.

Since limkW
a,b
p

(
µkt , µ̄t

)
= 0 implies µkt ⇀ µ̄t (Theorem 3), then

lim
k

2k−1∑
n=0

∫ (n+1)∆t

n∆t

dt

∫
Rd
dµkt ∂tf =

∫ 1

0

dt

∫
Rd
dµ̄t∂tf.
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The same applies to h, for which we have limkW
a,b
p

(
h
[
µkt
]
, h [µ̄t]

)
= 0, thus

lim
k

2k−1∑
n=0

∫ (n+1)∆t

n∆t

dt

∫
Rd
dh
[
µkt
]
f =

∫ 1

0

dt

∫
Rd
dh [µ̄t] f.

We are now left to prove

lim
k

∣∣∣∣∣∣
∫ 1

0

dt

∫
Rd
dµ̄tv [µ̄t] · ∇f −

2k−1∑
n=0

∫ (n+1)∆t

n∆t

dt

∫
Rd
dµkt v

[
µkn∆t

]
· ∇f

∣∣∣∣∣∣ = 0.

Using the triangular inequality, we prove it by proving the three following:

� limk

∣∣∣∑2k−1
n=0

∫ (n+1)∆t

n∆t
dt
∫
Rd
(
dµ̄t − dµkt

)
v [µ̄t] · ∇f

∣∣∣ = 0. Since µ̄t is continuous and v is Lipschitz

with respect to its argument and bounded, then v [µ̄t] · ∇f ∈ C∞c ((0, 1)× Rd), thus µkt ⇀ µ̄t implies
the result.

� limk

∣∣∣∑2k−1
n=0

∫ (n+1)∆t

n∆t
dt
∫
Rd dµ

k
t

(
v [µ̄t]− v

[
µkt
])
· ∇f

∣∣∣ = 0. Since it exists a constant C4 such that

W a,b
p

(
µkt , µ̄t

)
≤ 2−kC4, then the previous limit can be proved by recalling that µkt has �nite mass

smaller than m and observing that ∇f is a bounded function. Thus

lim
k

∣∣∣∣∣∣
2k−1∑
n=0

∫ (n+1)∆t

n∆t

dt

∫
Rd
dµkt

(
v [µ̄t]− v

[
µkt
])
· ∇f

∣∣∣∣∣∣ ≤ lim
k

∣∣∣∣∫ 1

0

dtm 2−kNC4 max
[0,1]×Rd

(∇f)

∣∣∣∣ = 0.

� limk

∣∣∣∑2k−1
n=0

∫ (n+1)∆t

n∆t
dt
∫
Rd dµ

k
t

(
v
[
µkt
]
− v

[
µkn∆t

])
· ∇f

∣∣∣ = 0. The proof is similar to the previous

case, recalling that ‖v
[
µkt
]
− v

[
µkn∆t

]
‖C0
≤ (t− n∆t)(Mm+ P ).

We have thus proved the �rst part of the following proposition

Proposition 7. The measure µ̄t := limk µ
k
t is a weak solution of (1). Moreover, µ̄t ∈Mac

0 .

Proof. We have to prove that µ̄t ∈ Mac
0 . De�ne the non-autonomous vector �eld vt := v [µ̄t] and

the time-dipendent measure ht := h [µt]. Recall that µ̄t is continuous with respect to time, thus vt is
a continuous vector �eld with respect to time, each ht is absolutely continuous and ht is continuous
with respect to time. The corresponding unique solution of (1) is thus in Mac

0 , see Theorem 5. Hence,
µ̄t ∈Mac

0 .

We now prove that we have continuous dependence of the solution of (1) from the initial data. The
estimate also give uniqueness of the solution of (1).

Theorem 6. Let µt, νt be two solutions of (1), with initial data µ0, ν0 ∈Mac
0 respectively. Let v, h satisfy

(H). Then

W a,b
p (µt, νt) ≤ et(

p+1
p L+2mN+Q+1)W a,b

p (µ0, ν0) . (16)

In particular, under assumption (H), the solution of (1) is unique.

Proof. The key observation is that a solution of (1) at time t + s is of the form µt+s = Φ
v[µt]
s #µt +

s h [µt] + o(s). Also observe that the mass of each solution satis�es µt(Rd) ≤ µ0(Rd) + tP ≤ mp, with
m := (µ0(Rd) + P )1/p.

Take now v, h satisfying (H), and µt, νt two solutions of (1), with initial data µ0, ν0 respectively
(eventually coinciding). De�ne ε(t) := W a,b

p (µt, νt) and observe that it is a Lipschitz function, since

e(t+ s)− e(t) = W a,b
p (µt+s, νt+s)−W a,b

p (µt, νt) ≤
≤ W a,b

p (µt+s, µt) +W a,b
p (µt, νt) +W a,b

p (νt, νt+s)−W a,b
p (µt, νt) ≤ 2s(Mm+ P )
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Now observe the following

ε(t+ s) ≤ W a,b
p

(
Φv[µt]s #µt, Φ

v[νt]
s #νt

)
+ sQW a,b

p (µt, νt) + o(s) ≤
(
1 + p+1

p Ls+ o(s)
)
W a,b
p (µt, νt) +

+µt(Rd)1/p(1 + Ls/p+ o(s))(s+ o(s))NW a,b
p (µt, νt) + sQW a,b

p (µt, νt) + o(s) ≤
≤ ε(t) + s

(
p+1
p L+ 2mN +Q

)
ε(t) + o(s) ≤ ε(t) + s

(
p+1
p L+ 2mN +Q+ 1

)
ε(t).

The last estimate holds for su�ciently small s. Using the integral form of the Gronwall inequality, we
have (16). The uniqueness of the solution of (1) is a direct consequence.
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