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Chapter

Principal Components and Factor
Models for Space-Time Data of
Remote Sensing
Carlo Grillenzoni

Abstract

Time-lapse videos, created with sequences of remotely-sensed images, are widely
available nowadays; their aim is monitoring land transformations, both as regards
natural events (e.g., floods) and human interventions (e.g., urbanizations). The
corresponding datasets are represented by multidimensional arrays (at least 3-4D)
and their spectral analysis (eigenvalues, eigenvectors, principal components, factor
models) poses several issues. In particular, one may wonder what are the statistically
meaningful operations and what is the treatment of the space–time autocorrelation
(ACR) across pixels. In this article, we develop principal component analysis (PCA,
useful for data reduction and description) and factor autoregressive models (FAR,
suitable for data analysis and forecasting), for 3D data arrays. An extensive applica-
tion, to a real case study of a Google Earth video, is carried out to illustrate and check
the validity of the numerical solutions.

Keywords: autoregressive models, eigenvalues space-time, least squares,
multidimensional arrays, space-time forecasting

1. Introduction

Modern remote sensing technologies, for data acquisition and processing, provide
large amounts of environmental data, with good coverage in space and time. When
such data are in the form of sequences of digital images, properly georeferenced and
equalized, then an entire timelapse video can be constructed. These movies allow
dynamic monitoring and surveillance of earth areas subject to natural events (such as
floods, landslides, and wildfires) and human interventions (such as urbanization,
agriculture, and wars). A classical example is the Google Earth platform which edits
videos from the imagery of LandSat and Copernicus satellites and broadcasts them
through its YouTube channel. Recently, [1] has also implemented an online engine
that enables users to build their videos at a global scale; it is continuously improved as
regards space–time resolution and image quality.

Apart from descriptive and entertaining aspects, timelapse videos are useful for
monitoring and surveillance purposes, to signal land hazards and risks. In this per-
spective, numerical methods for representing the video frames and for obtaining
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meaningful information are crucial. From a statistical viewpoint, the video datasets
are multidimensional (4D) arrays of space–time positive numbers; given their com-
plexity, the application of dimensional reduction techniques, such as principal com-
ponents (PC) and factor analysis, is necessary. Basic algebraic instruments are the
eigenvectors of the covariance matrices and their projection properties in the space.
These techniques are well known for single digital images; e.g., [2] apply PCA to
image compression, [3] to object detection and image segmentation, and [4] to
heterogeneous geodata layer fusion.

Point spatial data have a smaller size than images and allow for a formal treatment
of the temporal component; e.g., [5] uses PC for directional (ridge) clustering of
earthquake epicenters, [6] define a PCA approach in the attribute space that maintains
the data structure in the spatiotemporal domain, and [7] develop space–time PCA
toward functional statistical analysis. Operationally, [8] model networks of environ-
mental stations as a multivariate AR system and use PC for reducing its dimension;
they also study the effect of temporal ACR on PC extraction.

PCA of human videos has been considered in Ref. [9]; given the heterogeneity
of scenes, the main goal is clustering the frames in homogeneous groups for subse-
quent uses (e.g., clip extraction). Liu et al. [10] used a nonlinear version of PCA to
reach a more operational goal of automatic video editing. PCA methods for
semantic video interpretation, to be applied in computer vision and robotics, have
a long history mostly based and supervised classification; see Ref. [11] and
reference therein. They require the construction of large and consistent datasets of
annotated (human pre-classified) frames and sequences. Similarly, [12] using neural
classifiers have tried to forecast video sequences out-of-sample, i.e., beyond the
observed interval. This attempt is computationally demanding as requires the calibra-
tion of complex neural networks, which are over-parameterized models from a statis-
tical viewpoint.

In this paper, we consider timelapse videos of remote sensing data and use princi-
pal components both for synthesis and forecasting. In the time domain, PCs may
resume video frames as long exposure photography, to have an instantaneous view of
the land change. In the space domain, PCs may resume local series and reduce the
dimension of space-time systems, to implement simpler factor models. We show that
the presence of ACR is an issue from the theoretical viewpoint for PC estimation, but
has limited practical effects both on data description and parameter estimates. We
compare the forecasting performance, on out-of-sample frames, of factor AR models
(that may be modeled as univariate time series) and space-time AR models (that are
similar to multivariate systems; see [13].

The paper is organized as follows: Section 2 deals with PCs in the time domain
as a general tool of frame synthesis, compared to the simple arithmetic averaging.
Section 3 discusses PCs in the spatial domain as a tool for building factor models;
here, least squares (LS) estimator and forecasting algorithms are developed.
Throughout, an extended numerical application to the Google Earth video of the
Iquitos city (Peru) in the period 1984–2022 is carried out to illustrate and compare
the methods.

2. Principal component analysis of videos

Remote sensing technologies and digital image processing generate numerical data
on regular lattices. Typical datasets are in the form of 4D arrays of the type
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 ¼ Y ijlt

� �

, where i ¼ 1, 2… n, j ¼ 1, 2…m are indices of pixel position (which may be

transformed into latitude and longitude), l ¼ 1, 2… k are the spectral bands (k = 3 for
RGB color images), and t ¼ 1, 2…T is the index of time (daily, monthly, and annual).
The first approach of dimensional reduction is transforming the spectral bands into a
single indicator, as the grayscale in the visible range, or normalized difference vege-
tation index (NDVI) in the near-infrared channel, to obtain 3D arrays. The resulting
values Y ijt are usually autocorrelated (in space and time) and non-stationary (with
spatial and temporal trends).

The PC analysis of classical (2D) data matrices X ¼ Xij

� �

, with N units and M

variables, N >M> 3, is a technique of dimensional reduction to obtain a few linear
combinations of the columns xj which capture most of the variability and allow
visualization in 1-3D space. A direct application to image processing is to compress a

color picture  ¼ Xlf g31 in its grayscale version, e.g., [2, 14]. The PCA technique
vectorizes the RGB layers xl ¼ vec Xlð Þ, builds a nm� 3 matrix X ¼ x1,x2, x3½ �, esti-
mates the first principal component z1 ¼

P3
l¼1νl1xl, and reshapes it as a new image Z1.

The questions now are: How can PCA be applied to a video  ¼ Ytf gT1 , with T frames,
and what meaningful results may it produce?

Authors in Ref. [4] applied PCA to a 3D matrix with k = 9 geographic layers; the
goal is to improve the GIS overlaying technique based on the arithmetic mean, which
uses uniform weights νl ¼ 1=k. The fundamental step, before applying PCA, is
rescaling the layers in the range [0,1], with the transformation Xijl=max ij Xijl

� �

; the

PCA technique then provides non-uniform weights which enhance the most signifi-
cant layers. Now, even in remote sensing sequences Ytf g there is the goal of spatial
mapping, but with the most ambitious purpose of representing the time-evolution of
the phenomenon in a single frame (as in long-exposure photography). In this context,
there are no problems of data heterogeneity, as the frames belong to the same band;
rather, there is an issue of strong space-time ACR.

The steps for PCA investigation of a video are as follows: transform the initial 4D
dataset in grayscale (frame by frame) or proceed separately on each color band.

Vectorize the resulting 3D array  ¼ Y ijt

� �

, n�m� T, as

Y ¼ vec Y1ð Þ, vec Y2ð Þ… vec Ytð Þ… vec YTð Þ½ �, (1)

obtaining a 2D matrix of size nm� T. Consider its centered (mean zero) version

Y0 ¼ Y � 1nm ⊗ y
� �

, y ¼ 10nmY=nm, (2)

where 1nm is a unit vector of length nm. Compute the covariance matrix C (which
is symmetric and positive definite) and perform its spectral factorization

C ¼ Y 0
0Y0=nm, C ¼ VΛV0, (3)

where V,Λ, are T � T matrices of eigenvectors and eigenvalues, where the latter
are placed in decreasing order: λk ≥ λkþ1 within Λ.

Now, the meaningful first PCs of the space–time array  are given by

z0 ¼ Y0v1, projection on the first PC axis, (4)

z1 ¼ Y v1=∥v1∥1, weighted average of Yt, (5)
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where v1 is the first eigenvector of the orthogonal matrix V, and ∥:∥1 is the
absolute norm. Finally, the vectors z0, z1 must be reshaped as n�m matrices Z0,Z1

and encoded in uint8 format [0,255], to be represented and processed as images.
While Z1 provides a weighted average of the frames, the image Z0 is more essential
and may detect the major changes of the sequence Ytf g.

An issue in this approach, compared to the classical PCA, is the lack of indepen-
dence of data. The space–time ACR of pixels may induce bias and inefficiency in the
estimates; in particular, in the standard errors of the eigenvector v1, see [15, 16]. As in
regression models, a naïve method to improve the statistical properties is to include
“lagged” terms into the system; in the above framework, this means computing the
matrix V in Eq. (3) on the augmented array

Y ∗ ¼ Y,Y1½ �, Y1 ¼ vec 1ð Þ, 1 ¼ Y i�1,j�1,t�1

� �

, (6)

where the lagged array 1 is integrated with missing terms, e.g., putting the
column ym,t�1 ¼ y1,t�1. The resulting matrix (6) has size nm� T T � 1ð Þ, and only

the first T elements of v ∗
1 are used for computing the PCA vectors z0, z1 in

Eqs. (4) and (5).
As in time series, e.g., [8], a substantial reduction of ACR is provided by the space–

time differencing yijt ¼ Y ijt � Y i�1,j�1,t�1

� �

. Since yijt also assume negative values, the

nature of the implied coefficients v1 substantially changes, and they may not be
suitable for the original data Y ijt. Furthermore, reconstructing the target image Z from

the PCA image z ¼ zij
� �

of the series yijt is difficult and biased. Indeed, this requires

the spatial integration Zij ¼ Zi�1,j�1 þ zij, which in turn involves nþm� 1 initial
values Zi1,Z1j; these border values are arbitrary and may distort the entire image Z.

Finally, for point (non-lattice) data, with matrices Xt ¼ xsktf g, N �M, equispaced

in time t but irregularly distributed in space with coordinates is, js
� �

, [17] and [6] have
considered a PCA approach based on a spatially weighted covariance matrix, as in the
Moran index

CW ¼ 1

NT

X

T

t¼1

Xt � xð Þ0WN Xt � xð Þ, wij ¼
0, i ¼ j,

1, sparse,

�

where W is a N �N contiguity matrix of the points based on the assumption of
interactions (e.g., nearest neighbors). The derivation of the matrix W for lattice data
is possible using geometrical rules of chess moves (e.g., rook, queen, etc.); in the
presence of asymmetry, the positive definiteness of C is preserved by

CW ¼ 1

2nm
Y 0

0 Wnm þW0
nm

� �

Y0:

However, apart from the arbitrariness of the contiguity rules, for image data the
building and use of the nm� nm array W is numerically demanding for lattices [18],
even in the lowest resolution case n,mð Þ = (144, 256).

Anyway, the presence of ACR mostly affects the standard errors and test statistics
of the estimates v1 (see [15] p. 299); hence, it may be a minor problem when using the
PCs for image representation and processing. Instead, the mentioned corrections may
introduce significant bias; thus, in the application, we mainly focus on Eqs. (4) and
(5) for image synthesis.
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2.1 Application to Google earth video

Google [1] creates timelapse videos based of LandSat and Copernicus satellite
images, which are properly georeferenced and homogenized. The service is global,
locally zoomable, and enables to evaluate how the Earth has changed over the past
40 years (since 1984). A set of high-resolution videos of interesting areas are put on
the YouTube platform and can be downloaded; we consider the Iquitos city in Peru,
located on the banks of Rio Amazonas, see [19]. As a consequence of the periodic
floods, the change of the river bed between 1984 and 2022 is impressive, as well as the
impact on urban growth (see Figure 1).

Given the computational load of the algorithms for a laptop computer with
MATLAB software, we consider a low-resolution video (240p) and an area of about 18
� 22 Km. This yields a data array in black and white of size n = 288, m = 368, T = 39,
which provides N = 4,133,376 observations. The color display is shown in Figure 1;
notice the significant displacement of the river bed during 39 years.

Figure 2 provides the main statistics of the video in grayscale; the time-trends in
Panel 2a show a rough 5-year cycle of the vegetation activity, which may be related to

El Niño oscillation (ENSO). Panel 2b provides the correlation matrix of Eq. (3): R ¼
S�1=2CS�1=2 with S ¼ C⊙ I and shows that nearest frames are more correlated. Panel
2c shows the path of the first eigenvectors of Eqs. (3) and (6) and differences series y;
the first two are proportional (and coincide when are normalized by 1=∥v1∥1),
whereas the third is consistent with the first. This means that ACR has not a great
effect on the estimates of v1. Finally, Panel 2d displays the relative eigenvalues
λk=tr Λð Þ in the original and differenced series; it shows that PC1 is more significant on
the original data, where it captures 71% of variability.

Finally, Figure 3 displays in pseudocolor (with the MATLAB default colormap),
the first PCA images from Eqs. (4) and (5). Panel 3a shows Z1, a weighted average of

Figure 1.
Google Earth video [19] of Iquitos (Peru) in the period 1984–2022: (a) Google map 2023; (b) LandSat color
image 2022; (c) Low-resolution decadal frames.
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the frames; its equalized version in Panel 3b enhances the land changes over 40 years.
Panel 3c shows Z0, the classical PC1; it is more effective in capturing the essential
changes, placed where two basic colors (blue/yellow of forest/other) overlap. Panel 3d
displays the PC1 obtained on the differenced series; it enhances the edges of the
various images. The attempt to reconstruct the original image from the latter has
provided meaningless results.

3. Dynamic factor models for videos

PCA is an explorative and descriptive technique of data analysis, whose numerical
results may sometimes be difficult to interpret, also in image processing. Space–time
ACR may be an issue for PCA estimates, but it is an asset for modeling Y ijt and using
the models for filtering and forecasting. In particular, out-of-sample forecasting of
video frames is an objective test-bench for checking the effectiveness of numerical
methods. In this context, PCA results may be useful for improving the parsimony of
classical regression models, with the application of dynamic factor techniques (e.g.,
[20, 21]) to space–time data.

Figure 2.
Statistics of the Iquitos video [19] in grayscale: (a) Trends of mean (blue) and standard deviation of the frames;
(b) Correlation matrix of Eq. (3); (c) Path of PC1 eigenvectors v1: original data (3) (blue), augmented data matrix
(6) (black), and differenced series y (red); (d) Percent PC eigenvalues of the original and differenced (red) data.
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3.1 Space-time systems

The space–time autoregressive (STAR) model puts each cell of the 3D array  in
relation to the contiguous ones, such as Y ijt ¼ g Y i�h,j�k,t�l

� �

þ eijt, where h, k, l ¼
1, 2… p are spatial and temporal lags, p>0 is the order of the dependence, and eijt is an
unpredictable sequence. Under linearity of g �ð Þ, the STAR(p) representation can be
denoted as

Y ijt ¼ α0 þ
X

p

h¼0

X

p

k¼0

θhkY i�h,j�k,t þ
X

p

l¼1

X

p

h¼�p

X

p

k¼�p

ϕhklY i�h,j�k,t�l þ eijt, (7)

where θ00 ¼ 0 and eijt � IN 0, σ2e
� �

is an independent and normal (IN) sequence.
The first part of the model (7), with parameters θhk, has a peculiar nature; it deals with
the simultaneous relationships between the cells, and it is well studied in the (static)
spatial AR literature, e.g., [18]. For reasons of identification and prediction, it has a
triangular structure, so that filterings may proceed from the upper-left corner of every
Yt to the lower-right one in a sequential way.

Despite the simultaneous constraint, the number of parameters Mp of the model
(7) is still large: for small p = 2 it becomes Mp = 59. A way to reduce the parametric
complexity is to aggregate the pixels according to the geometric rules of contiguity of

Figure 3.
Pseudocolor display of the first PCA images of Eqs. (4), (5): (a) Weighted average Z1; (b) Equalized version of
Z1; (c) Centered image Z0; (d) Result on the differenced series.
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the chess moves. By defining the notation ij� 1 when at least one of the
indices i, j is lagged, then one may define the triangular (W) and ring (X)
averages

W ij�1,t ¼ Y i�1,j,t þ Y i,j�1,t þ Y i�1,j�1,t

� �

=3, (8)

Xij�1,t�1 ¼ ðY i�1,j,t�1 þ Y iþ1,j,t�1 þ Y i,j�1,t�1 þ Y i,j�1,t�1 þ …

þY i�1,j�1,t�1 þ Y iþ1,j�1,t�1 þ Y i�1,jþ1,t�1 þ Y iþ1,jþ1,t�1Þ=8,
(9)

which lead to a constrained STAR (2) model with only 9 coefficients

Y ijt ¼ α0 þ θ1W ij�1,t þ θ2W ij�2,t þ ϕ1Y ij,t�1 þ ϕ2Y ij,t�2 þ … (10)

þβ1Xij�1,t�1 þ β2Xij�2,t�1 þ β3Xij�1,t�2 þ β4Xij�2,t�2 þ eijt, (11)

The approach (8)–(11) of parametric reduction is subjective as depends on the
aggregation rules; a more general solution arises by noting that all neighbors
Y i�h,j�k,t

� �

of the series Y ijt

� �

can be “averaged”with the PCA technique and replaced

by the first latent factor Zijt

� �

as in Eqs. (4) and (5). Specifically, let yij ¼
Y ij1,Y ij2 …Y ijT

� �0
be the time series located at ij, and consider its neighbors yi�h,j�k in

the square �p; then, for each ij one has the temporal PC1 component

zij ¼ Y ijvij1, Y ij ¼ yi�p,j�p … yi�h,jþk… yiþp,jþp

h i

, (12)

where the data matrices Y ij have size T � 2pþ 1ð Þ2–1.
Alternatively, with the 2pþ 1ð Þ2–1 spatially lagged arrays implied by Eq. (12), one

may proceed in the space domain and extract the PCs at each t. Specifically, let Yt ¼
Y ijt

� �

be the t-th frame and Yhk,t ¼ Y iþh,jþk,t

� �

, h, k ¼ 1… p its spatially shifted com-

panions, i.e., the frames built with all h, k-lagged neighbors of each site ij; then, the
spatial PC1 components are given by

zt ¼ Ytvt1, Yt ¼ vec Y�p,�p,t

� �

… vec Y�h,þk,tð Þ… vec Yppt

� �� �

, (13)

where the data matrices Yt have size nm� 2pþ 1ð Þ2–1, and reshaping zt provides a
n�m PC1 layer for each t.

Both approaches (12) and (13) yield latent factor arrays ℤ of size n�m� T,
which may be used as explanatory (X) variables for the original data , modeled
as an ARX system. Further, the factor series may be represented by a simple AR
scheme; this leads to the latent factor system of order p = 2 with 9 parameters, as
Eqs. (10) and (11)

Zijt ¼ α1 þ θ1Zij,t�1 þ θ2Zij,t�2 þ uijt, uijt � IN 0, σ2u
� �

, (14)

Y ijt ¼ α2 þ ϕ1Y ij,t�1 þ ϕ2Y ij,t�2 þ β0Zijt þ β1Zij,t�1 þ β2Zij,t�2 þ eijt, (15)

By means of the PCA framework (12) and (13), one can avoid to estimate the
system (14) and (15) with the Kalman filter [21], which is nonlinear as regards factors
and parameters. In the following, we campare the fitting and forecasting performaces
of the models (10), (11), (14), and (15); this requires the definition of estimation
algorithms.
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3.2 Statistical algorithms

If the extraction of latent factors involves linear matrix algebra (eigenvalue
decomposition), the estimation of parameters of models (10), (11), (14), and (15)
may be accomplished with least squares (LS). Rewrite the model (10) and (11) in
regression form as follows

Y ijt ¼ δ0ξijt þ eijt, (16)

δ0 ¼ α0, θ1 …ϕ2, β1 … β4½ �, (17)

ξ0ijt ¼ 1,W ij�1,t …Y ij,t�2,Xij�1,t�1 …Xij�2,t�2

� �

, (18)

where the regressors W,X are generated from the data Y ijt

� �

with the formulas

(8), (9). Thus, minimizing the sum
P

ijte
2
ijt δð Þ provides the LS estimator

δ̂N ¼
X

T

t¼pþ1

X

n�p

i¼pþ1

X

m�p

j¼pþ1

ξijtξ
0
ijt

 !�1
X

T

t¼pþ1

X

n�p

i¼pþ1

X

m�p

j¼pþ1

ξijtY ijt, (19)

¼ δþ
X

T

t¼pþ1

X

n�p

i¼pþ1

X

m�p

j¼pþ1

ξijtξ
0
ijt

 !�1
X

T

t¼pþ1

X

n�p

i¼pþ1

X

m�p

j¼pþ1

ξijteijt, (20)

where p = 2 is the order of the model (7). Eq. (20) is obtained from
Eqs. (16), (19), and N = n� 2pð Þ m� 2pð Þ T � pð Þ is the actual sample size, net of
the borders.

The expression (20) shows the consistency of the estimator (19), when the con-
temporaneous terms W ijt have a triangular structure as (8); in fact, it enables the
sequential calculation of residuals and their independence from all regressors:

E ξijteijt
	 


¼ 0. Under this constraint and the conditions of stationarity and isotropy,

one can show the classical convergence property [13].

ffiffiffiffi

N
p

δ̂N � δ
	 


! N 0, E ξijtξ
0
ijt

	 
�1
σ2e

� 


, as N ! ∞, (21)

from which, the dispersion matrix of the estimator (19), (20) is given by

Σ̂δ̂ ¼ R�1
N σ̂2e , RN ¼

X

T

t¼pþ1

X

n�p

i¼pþ1

X

m�p

j¼pþ1

ξijtξ
0
ijt, (22)

σ̂2e ¼ N �Mp

� ��1
X

T

t¼pþ1

X

n�p

i¼pþ1

X

m�p

j¼pþ1

Y ijt � ^δ0Nξijt

	 
2
, (23)

where Mp = 9 is the length of δ when p = 2. Unlike maximum likelihood, the
algorithm (19) can manage datasets of large dimensions; i.e., with high pixel resolu-
tion n�m and high frequency frames T. Also the inversion of the Mp �Mp matrix
(22) generally does not involve numerical issues. The formulas (19)–(23) can also be
applied to the factor model (14), (15), in an even simpler way.
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Forecasting. As regards prediction, given the linearity of Eqs. (10), (11) and (14),
(15) the forecasts can be obtained with the chain rule of forecasting; i.e., by “pushing
forward” the entries of the vector ξijt and updating it with the past forecasts:

Ŷ ij,Tþl ¼ E Y ij,TþljYT�t, t≥0
� �

¼ δ0ξ̂ij,Tþl, (24)

ξ̂ij,Tþl ¼ 1, Ŵ ij�1,Tþl … Ŷ ij,Tþl�2 … X̂ij�2,Tþl�2

� �0
, l ¼ 1, 2…L, (25)

where X̂ij�2,Tþl�2 ¼ Ŷ i�2,j�2,Tþl�2 þ Ŷ i�2,j�1,Tþl�2 þ … þ Ŷ iþ2,j�2,Tþl�2

� �

=16 are the

lagged ring averages for l> 2, and so on.
A computational issue with the formula (24) and (25) applied to the model (10)

and (11) arises from the presence of the contemporaneous terms Ŵ ij�k,Tþl, k ¼ 1, 2,

which depend on the forecasts Ŷ i�k,j�k,Tþl themselves. Although these elements satisfy

the unilateral constraint, they require the upper-left border values Ŷ ij,Tþl, i, j≤ p to

start. These quantities can be obtained as forecasts of AR models applied to the

marginal cells, or by simply setting Ŷ ij,Tþl ¼ Y ij,T, as in random-walk models. Hence,

by the concatenation of forecasts in Eqs. (24) and (25), these marginal values influ-

ence the entire forecast frame ŶTþl. This effect can be checked empirically with out-
of-sample forecasting, i.e., predicting data that have been omitted from parameter
estimation. The typical statistics used for evaluation are the mean squared forecast

errors (MSFE) and its relative R2 index

MSFET0 lð Þ ¼ 1

n� 2pð Þ m� 2pð Þ
X

n�p

i¼pþ1

X

m�p

j¼pþ1

Y ij,T0þl � Ŷ ij,T0þl

	 
2
, (26)

R2 lð Þ ¼ 1�MSFET0þl=σ̂
2
YT0þl

, l ¼ 1, 2…L, (27)

where T0 ¼ T � L. These statistics enable to compare the performance of the
models (10), (11) and (14), (15); the best one is that with lowest (26). The index (27)
provides a measure of the reliability of forecasts in decision-making.

Simulations. To test the statistical properties of the LS estimator (19), we perform
simulation experiments on the model (10), (11) with stable=unstable parameters and
unilateral=multilateral simultaneous components. In particular, the multilateral
design of the term W follows the cross (rook) scheme

W ∗
ij�1,t ¼ Y i,j�1,t þ Y i,jþ1,t þ Y i�1,j,t þ Y iþ1,j,t

� �

=4,

in this case, the LS method should be biased for all parameters. We perform 500
replications of the system (10), (11) with p = 1, n = 13, m = 12, T = 11, and ∣δi∣ = 0.5,
1.0, for i = 1… 4; notice that the actual sample size N = n� 2ð Þ m� 2ð Þ T � 1ð Þ = 1100 is

large enough. Simple means, root mean squared errors (RMSE = [Var + Bias 2]1=2) and
mean P-value of the normality test are reported in Table 1.

Since the parameters have the same size, their statistics can be averaged to provide
synthetic indicators. As a result, one may note that the worst performance is that of
multilateral W with “unstable” coefficients; whereas the model with unilateral W
benefits from the greater signal-to-noise ratio σY=σe induced by ∣δi∣ = 1. This property
is known as super-consistency [13], but its side-effect is the non-normality of esti-
mates; this complicates statistical inference, requiring non-standard distributions as in
the tests for unit-roots of time series.
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3.3 The empirical application

We illustrate and check the methods discussed so far on the same dataset as
Section 2, displayed in Figure 1. The first step in model building is the extraction of
the PC1 from the array  with the approaches (12) and (13). With p = 2, we select 24
neighbor series of each site ij; the results are displayed in Figure 4. Panel (a) shows
that the PC1 explains on average about 85% of the frame variability, with a growing
trend; further, Panel (b) shows its spatial pattern, with a greater quote in areas subject
to major changes. Panels (c,d) show that the PC1 arrays have an image representation
that is sharp for the method (12) and blurred for (13).

Apart from the descriptive aspects, PC1 data are necessary for modeling and
prediction; Table 2 provides the parameter estimates of the models (10), (11), (14),
(15) with the LS method (19). The estimations are performed on the frames
Y3 …YT�2½ �, where Y1,Y2 are starting values and YT�1,YT serve for forecasting
evaluation. The results are very significant in terms of t-type statistics because these
are inflated by the large sample size N = 3,618,160; the evaluation of coefficients

should then be based on their size, e.g., ∣δ̂i∣>0:1 as they are related to ACR. In any

case, the R2 indices of goodness of fit are very satisfactory, and, as regards the model
(10), (11), the simultaneous components W have a leading role. However, the best
fitting model is Eqs. (14) and (15) with factor component Z estimated as in Eq. (13),
and normalized by 1=∥v1∥; in the following, we evaluate their forecasting ability.

Forecasting. The prediction ability of the models of Table 2 is evaluated on the last
two frames YT�1,YT, which were kept out of parameter estimations. The forecasts
were computed with the function (24), (25) and then evaluated with the statistic (26),
(27), with starting point T0 ¼ 2020; in these computations, the forecasts were
expressed in uint8 format, and the results are displayed in Table 3. As for the in-
sample fitting, the best model is (14), (15) with factor (13) normalized by 1=∥v1∥; it is

W-triangular W-cross

Param. Value Mean RMSE N-test Mean RMSE N-test

α0 0.5 0.501 0.031 0.414 0.211 0.291 0.055

θ1 �0.5 �0.498 0.019 0.111 �0.433 0.072 >0.5

ϕ1 0.5 0.500 0.007 0.001 0.755 0.260 >0.5

β1 �0.5 �0.501 0.016 0.002 0.051 0.556 >0.5

Abs. Ave. 0.5 0.500 0.018 0.132 0.363 0.295 0.389

α0 1.0 1.001 0.030 >0.5 �9.593 13.56 >0.5

θ1 �1.0 �1.000 0.000 0.001 �2.401 1.409 0.011

ϕ1 1.0 1.000 0.000 0.001 1.086 0.107 0.001

β1 �1.0 �1.000 0.000 0.001 2.707 3.709 0.001

Abs. Ave. 1.0 1.000 0.008 0.126 3.946 4.697 0.128

Table 1.
Performance of the LS estimator (19), applied to the model (10), (11) with order p=1, with triangular and cross
(rook) contemporaneous component W, and stable (0.5) and unstable (1.0) coefficients; mean, RMSE, mean P-
value are over 500 replications.
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Figure 4.
Results of the extraction of the PC1 from the 24 neighbors of each ij: (a,c) Spatial direction (13); (b,d) Temporal
direction (12); (a,b) Quote of variance explained by PC1; (c,d) Images of PC1 at time T = 2022.

Param. Model (10) (10) without W Param. Model (12), (15) Model (13), (15)

α0 0.804 (62.4) 2.958 (150.5) α1 3.284 (225.3) 4.768 (268.6)

θ1 0.914 (1580) . θ1 0.641 (1328) 0.651 (1330)

θ2 �0.197 (�338.2) . θ2 0.319 (662.) 0.293 (599.7)

ϕ1 0.494 (641.1) 0.526 (445.5) α2 �0.436 (�36.6) 1.433 (102.3)

ϕ2 0.204 (267.1) 0.217 (185.5) ϕ1 0.5252 (1048) 0.577 (1163)

β1 �0.450 (�288.0) 0.019 (8.18) ϕ1 0.212 (426.9) 0.248 (503.5)

β2 0.139 (117.0) 0.099 (56.4) β0 1.067 (2536) 0.722 (1812)

β3 �0.185 (�121.2) �0.006 (�2.53) β1 �0.565 (�790.5) �0.408 (�701.1)

β4 0.071 (62.5) 0.110 (63.2) β2 �0.233 (�347.3) �0.159 (�298.1)

σ2e 90.39 212.05 σ2e 77.60 115.07

R2 0.932 0.842 R2 0.942 0.914

Table 2.
LS estimates (and t-type statistics) (19), of the parameters of the model (10), (11) (with and without the
contemporaneous components W); and model (14), (15) (with factors (13) and (12) expressed in uint8 format)
on the data of Figure 1 in the period 1986–2020.
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slightly better than model (14), (15) with factor (12) and model (10), (11) without the
simultaneous components. In general, while the W components improve fitting, they
may affect forecasts; the reason is partly due to the starting values in the (upper-left)

borders, which are established with the random walk rule, e.g., Ŷ11,Tþ1 ¼ Y11,T.
Finally, Figure 5 displays the best forecasts for 2021, 2022 (with smallest MSFE in

Table 3) and compares them with the ground images (in pseudocolor MATLAB). The
spatial paths of forecasts are consistent with the actual images, although they show

fewer details in the urban area; further, the R2 = 0.9 coefficient in Table 3 confirms
the reliability of these forecasts.

Year (10)+W (10)–W (12), (15) (13), (15)

2021 248.75 170.05 166.47 167.81

(0.850) (0.898) (0.899) (0.898)

2022 428.75 288.27 281.74 283.93

(0.756) (0.836) (0.838) (0.837)

Table 3.
MSFE statistics (17), and R2 indexes (in parenthesis), of the AR models in Table 2 on the images 2021, 2022 of
the Iquitos video; Bold indicates the best result.

Figure 5.
Comparison of real frames and best forecasts in Table 3, obtained with algorithm (24), (25): (a,b) Real images
2021, 2022; (c,d) Forecasts of the model (13)–(15).
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4. Conclusions

This paper is concerned with the application of multivariate statistical methods to
timelapse videos of remotely sensed data. Such movies are nowadays available on
Internet for entertaining and scientific purposes, and their modeling is challenging
both for the size of datasets (big data) and the complexity of the phenomena they
represent. Classical multivariate techniques of data reduction, such as principal
components, are useful both for reasons of data description and model building.
In particular, PCA may condense the frames as a long exposure photography (see
Figure 3) and provide local components for dynamic factor models, as Eqs. (14), (15).
These are smart alternatives to complex space–time AR models.

The PCA of videos in the time domain provides two basic solutions for frame
fusion, depending on whether it considers a weighted average of original images or
the centered data array, see Eqs. (4), (5). In the second case, a uint8 transformation of
the estimates is necessary to appreciate the result as an image; this transformation, by
censoring negative values, makes the final result more essential and highlights major
land changes (see Figure 3c). However, also factor models are useful for descriptive
purposes as highlights the spectral properties of data arrays in the time domain and
the spatial domain (see Figure 4a,b).

Mathematical modeling is useful for out-of-sample forecasting; this, in turn, is
useful for monitoring and surveillance. The paper has provided a factor model frame-
work which is more parsimonious and effective than the classical STAR systems. In
prediction, there is usually a negative trade-off between model complexity (which
improves fitting) and out-of-sample performance. While the model (7) requires ad-
hoc aggregations of neighboring pixels, as in Eqs. (8), (9), in the model (14), (15) one
has only to select the time order. As regards the spatial dimension, one may increase
the span p in Eqs. (12) and (13) without increasing the number of coefficients of (14),
(15); the only drawback is PC estimation at the borders of the lattice which requires
symmetrical or circulant integrations.

A comparison of the models in Table 3with p = 2 shows that there is not significant
difference in the performance of factor models and simplified STAR (without the

simultaneous component W). In particular, all R2 coefficients are close to 90%; how-
ever, the distance between the two modelings may increase as p.

Data and software

They are available at the site: https://it.mathworks.com/matlabcentral/
fileexchange/173895-pca-and-factor-ar-models-for-timelapse-video-data
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