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Abstract: Spatial auto-regressive (SAR) models are widely used in geosciences for data analysis;
their main feature is the presence of weight (W) matrices, which define the neighboring relationships
between the spatial units. The statistical properties of parameter and forecast estimates strongly
depend on the structure of such matrices. The least squares (LS) method is the most flexible and can
estimate systems of large dimensions; however, it is biased in the presence of multilateral (sparse)
matrices. Instead, the unilateral specification of SAR models provides triangular weight matrices that
allow consistent LS estimates and sequential prediction functions. These two properties are strictly
related and depend on the linear and recursive nature of the system. In this paper, we show the
better performance in out-of-sample forecasting of unilateral SAR (estimated with LS), compared
to multilateral SAR (estimated with maximum likelihood, ML). This conclusion is supported by
numerical simulations and applications to real geological data, both on regular lattices and irregularly
distributed points.

Keywords: contiguity matrices; consistent estimation; spatial autoregression; spatial data; spatial
forecasting

1. Introduction

Spatial data are nowadays present in many social and natural phenomena. They are
mainly available in two formats: on regular lattices (as digital images and remotely-sensed
data), and irregular polygons and sparse points (as in territorial zoning and environmental
surveys); see [1] for a detailed description. Spatial data are representable within geographic
information systems (GIS) and statistical models may be built for practical purposes, such
as filtering and prediction. In digital images, the main goals are denoising and sharpen-
ing (e.g., [2]), to perform image segmentation and classification. In polygonal data, the aims
are structural analyses and spatial forecasting (e.g., [3]) to support planning decisions.

One of the main features of spatial data is auto-correlation (ACR), which arises from
the interaction between random variables located ad different spatial units (pixels in images,
and centroids in polygons). The general rule is that the minor is the distance of units, and
the greater is the size of the ACR. This dependence must be represented in regression
models in order to satisfy the basic assumption of uncorrelated residuals. This, in turn, is
necessary to have unbiased and efficient estimates of the parameters and their standard
errors; that is, for performing statistical inference and prediction without bias.

On the other hand, ACR is useful for forecasting the character under study in areas
where it is not measured, especially when exogenous (X) covariates are not available.
It follows that representing the ACR in spatial systems is one of the major concerns of
statistical modeling. As in time series analysis, it may be accomplished by introducing
into the equations suitable “lagged” terms, i.e., the value of the dependent variable in
nearby units. This leads to the spatial auto-regressive (SAR) models, which resemble the
AR schemes of time series and dynamical systems. However, while in time there is only a
single direction (from past to present), in the plane there are almost infinite directions.
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The specification of the models is twofold: unilateral or multilateral, depending on
whether the linkage between the nearby units reflects or not a sequential ordering. As an
example, in lattice data, one has the triangular and rook schemes in Figure 1a,b [1]; in
the first, the dynamic is unidirectional since starting from the upper-left corner it follows
the sequence of writing a text [4]. Instead, in Figure 1b the dynamic is multi-directional
as each cell involves parts of the text that are not yet written [2]. Figure 1b,c show the
analogous situations in polygonal data, where the position of each unit is defined by its
center (geometric or political). In Figure 1d the link is multi-directional with four nearest
neighbors (NN), whereas in Figure 1c it is in the north direction only.

(a) Triangular (b)  Rook

(c) Nearest North (d) Nearest Simple

Figure 1. Examples of lattice (a,b) and polygonal (c,d) data, with unilateral (a,c) and multilateral
(b,d) spatial dependence schemes, with respect to their nearest neighbors.

The statistical consequences of the two specifications of SAR models are important.
Multidirection linkages violate the condition of independence between regressors and
residuals, therefore, making least squares (LS) estimates biased and inconsistent. To solve
this problem, many alternative estimators have been proposed, such as maximum likeli-
hood (ML [1,5,6]), generalized method of moments (GM [7]), two-stage least squares [8]
and, recently, indirect inference (II [9]). However, these methods are computationally
demanding and use iterative algorithms of maximization which may not converge; involve
the matrices of spatial contiguity, that must be inverted; require a condition of spatial
stationarity (AR parameter |ϕ| < 1) that may not be fulfilled.

There are also theoretical works that analyze the LS method in multilateral SAR: [10]
showed that when the distance among random variables goes to infinity as the spatial
dimension increases or the weight matrix converges to zero, then LS is consistent. Ref. [11]
investigate the sensitivity of various LS estimators of the AR coefficient using Taylor expan-
sions and find that it is moderate for moderate ACR. Ref. [12] under the null hypothesis,
develop refined tests for first-order ACR based on Edgeworth expansion of the LS dis-
tribution. Ref. [13] developed an II estimator that implicitly corrects the bias of LS with
a mechanism that involves data simulations from a related model; they find that finite
sample performance is similar to that of ML. These works show the potential use of the
LS method even in SAR models with Toepliz-type contiguity matrices, which are used in
social and economic studies.
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In this paper, we focus on unidirectional SAR for lattice and polygonal data and we
show their ability to preserve the optimal properties of LS estimates even compared to
the efficient ML and GM methods. This feature is important because the LS method is
linear and can manage datasets of large dimensions, as it may avoid the direct use of the
contiguity matrices. Further, unilateral SAR models have a recursive structure, which
enables the application of the chain rule of forecasting also outside the observation area.
Instead, multilateral SAR models have prediction functions that involve “forward” values
and require iterations.

The spatial prediction of missing data (inside the perimeter of the observed area) has
been treated by [14–17] for multilateral SAR models, and [18] in the lattice case. They show
that the naive predictor based on the reduced form of SAR systems must be corrected with
the best linear unbiased predictor (BLUP) of classical statistics. However, the recursive
forecasts of unilateral SAR models do not need this BLUP correction and outperform the
others. We show these results with Monte Carlo experiments on synthetic data and out-of-
sample forecasting on real data of geosciences, such as digital elevation models (e.g., [19])
and the spatial diffusion of water isotopes (e.g., [20]).

The paper is organized as follows: Section 2 deals with lattice models, it reviews
the conditions of identification and consistency and evaluates their forecasts on random
surfaces and digital images; Section 3 deals with SAR models for polygonal and sparse point
data, it compares the forecasts of unilateral and multilateral models with various algorithms.

2. Regular Lattice Data

Regular lattice data are mostly present in remote sensing and digital images. These
data are in the form of rectangular arrays of the type Y = {yij}, with i = 1, 2 . . . n,
j = 1, 2 . . . m the indexes of position, which may be transformed into latitude and lon-
gitude. The values yij are usually autocorrelated (e.g., clustered) and one of the main
goals is to filter the array Y with its own values, to obtain interpolates and forecasts:
ŷn+h,m+k. To accomplish this task, SAR modeling puts each cell in relation to the contigu-
ous ones [1,21], such as yij = g(yi±h,j±k) + eij, where h, k = 1, 2 . . . p are spatial lags, p is
the order of dependence and {eij} is an unpredictable sequence.

In time series, the unidirectional (past-present) ordering of data is also called causal
and found the analysis of causality between stochastic processes. In lattice data, the causal
ordering can be established by following the lexicographic way of reading/writing a
text, i.e., processing the cells of Y starting from the upper-left corner. Unilateral dynamics
which satisfy this feature are the row-wise yi,j−k, the half-plane yi−h,j±k, h > 0 and the one-
quadrant (or triangular) with yi−h,j−k, (h + k) > 0 in Figure 1a [2,4]. Although causality is
naturally related to the dynamic of events and aspects of human learning, digital filters
of denoising and sharpening may follow non-causal models, such as the rook scheme in
Figure 1b (e.g., [22]). However, the unidirectional approach remains the favorite solution,
because it enjoys properties of sequentiality.

Under linear and unilateral constraints, the triangular SAR(p) model for yij is defined
as follows

yij =
p

∑
h=0

p

∑
k=0

(h+k)>0

ϕhk yi−h,j−k + eij, eij ∼ IN(0, σ2
e ), (1)

with independent normal (IN) residuals. In statistics, the system (1) is usually estimated
with the maximum likelihood (ML); this requires the vectorization of the data matrix
y = vecj(Y), of length N = n × m and the inversion of auto-covariance matrices Γy of size
N × N, see [3,23]. This solution is statistically efficient but computationally expensive and
can be implemented only for moderate dimensions of the lattice field.

Instead, the LS method can be applied even for large values of n, m; rewriting the
model (1) in regression form as
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yij = ϕ′xij + eij,

xij =
[
yi,j−1 . . . yi−h,j−k . . . yi−p,j−p

]′,
ϕ =

[
ϕ01 . . . ϕhk . . . ϕpp

]′,
the LS estimator becomes

ϕ̂N =

( n

∑
i=p+1

m

∑
j=p+1

xijx′ij

)−1 n

∑
i=p+1

m

∑
j=p+1

xijyij, (2)

= ϕ +

( n

∑
i=p+1

m

∑
j=p+1

xijx′ij

)−1 n

∑
i=p+1

m

∑
j=p+1

xijeij.

The second equation follows from (2) by inserting y = ϕ′x + e and is useful for statistical

analysis. The linearity of the algorithm (2) can be appreciated with respect to both yij

∣∣∣xij

and the recursive calculation of the sums, see [24]. Unlike the ML approach, it only involves
the inversion of a matrix of size (p + 1)2−1, for any value of n, m. The LS estimator is
unbiased and consistent for the unilateral model (1) because E(xijeij) = 0.

SAR(1). As an example, let p = 1, then the model (1) is yij = (ϕ1 yi,j−1 + ϕ2 yi−1,j +
ϕ3 yi−1,j−1) + eij. Applying the formula of [25] to the term yi,j−1, one obtains the moving
average (MA) representation

yi,j−1 = ei,j−1 +
i

∑
h=1

(h+l)<i

j−1

∑
k=1

(k+l)<j

max(i,j−1)

∑
l=0

ψhkl ei−h−l,j−1−k−l ,

from which E(yi,j−1eij) = 0. Similarly, E(xijeij) = 0 because all entries of xij = [yi,j−1, yi−1,j,
yi−1,j−1]

′ do not depend on eij; hence, the LS estimator (2) is unbiased. This result does not
apply to multilateral SAR models, because the MA decomposition would involve ei+h,j+k;
for the rook scheme in Figure 1b the ML estimator is necessary. Finally, as in a time series,
the consistency of LS does not need the stability of the model (1), e.g., |ϕhk/3| < 1; rather, it
improves with the signal-to-noise ratio σ2

y /σ2
e (e.g., [26]).

SAR(p,q,r). Empirical models often have a subset structure, i.e., have missing lagged
terms or they aggregate yi−k,j−h under a common parameter. The proper definition of such
models is SAR(p, q, r), where p = maximum lag of regressors, q = the number of spatial
units and r = the number of parameters. Two parsimonious models that will be extensively
applied in the paper are the triangular SAR(1,3,1) and the rook SAR(1,4,1) with drift α,
defined as

yij = α + ϕ
(
yi−1,j + yi,j−1 + yi−1,j−1

)
/3 + eij, yi0 = y0j = 0, (3)

yij = α + ϕ
(
yi,j−1 + yi,j+1 + yi−1,j + yi+1,j

)
/4 + eij, yi,m+1 = yn+1,j = 0, (4)

see Figure 1a,b and [1]. These models have almost the same number of regressors and can
be written as yij = α + ϕ yij + eij, where y is a local average. The condition of stability in

(3) is |ϕ/3| < 1, because it admits a MA decomposition with weights ψhkl ∝ (ϕ/3)(h+k+l)

which converge to 0, see [2]. By analogy, the model (4) is stable if |ϕ/4| < 1, and this is a
necessary condition for the convergence of its ML estimator (see Section 2.1).

2.1. The Vector Form

Previous representations are termed raster in GIS software. When the lattice dimension
is moderate (e.g., n × m < 1000), it may be useful to pass at the vector form. Refs. [18,23,25]
consider complex forms of vectorization for ML estimation. We follow the spatial econo-
metric approach which vectorizes the data matrix by columns and builds the contiguity
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matrix of all cells, see [6]. Thus, let y = vecj(Y) of size N = n × m; the first-order vector
model with drift becomes

y = α1N + ϕ Wy + e, e ∼ N(0, σ2
e IN), (5)

where 1N is a unit vector of length N and W is an N × N contiguity matrix. Its structure
depends on the order p and the marginal values: the models (3), (4) have matrices W with
sub-diagonals < 1 and sparse 1 on the main diagonal, in correspondence of the border
values yi1, y1j, yim, ynj. For n = 4, m = 7 one has the arrays in Figure 2, see [24]; the distinctive
feature of unilateral models is that W is always triangular, this provides recursivity to
the system.

0 10 20

0

5

10

15

20

25

(b)  Rook

0 10 20

0

5

10

15

20

25

(a)  Triangular

Figure 2. Contiguity matrices W of the models (3), (4) on a lattice of size n = 4, m = 7. Red dots have
value 1 and correspond to the border values; while the blue have value 1/3 in Panel (a) and 1/4 in
Panel (b); see [24].

The arrays in Figure 2 are obtained by solving the static system y = Wy, where m
determines the number of blocks of size n × n, with matrices In at the corners. However,
when W is inserted in the dynamic model (5), its diagonal elements wll = 1 must be replaced
by 0, obtaining W0. Each sub-diagonal corresponds to a specific regressor yi−h,j−k of models
(3), (4); thus, the array in Figure 2a can be decomposed as W0 = (W1 +W2 +W3), providing
an SAR(3) model. In simulations, the data-generation of {yl} proceeds by rows, starting
from an initial y = y0, as

yl = α + ϕ w′
l y + el , l = 1, 2 . . . N,

where w′
l is the l-th row of W0. Unilateral processes are insensitive to y0, since W0 triangular

fills y recursively; instead, the model (4), with the forward terms yi,j+1, yi+1,j, needs a non-
null initial vector, e.g., y0 = α1N .

Using matrix algebra, one may obtain the reduced (MA) form of the system (5)(
IN − ϕW

)
y = α1N + e,

y =
(

IN − ϕW
)−1(

α1N + e
)
, (6)

this provides an automatic way to generate SAR data, independent of the initial/border
condition y0. The reduced form (6) is fundamental for ML estimation because, under Gaus-
sianity, the log-likelihood function takes the form

ℓ(α, ϕ, σ) ∝ −N log(σ) + log
[

det
(

IN − ϕW
)]

−
(
e′e

)
/2σ2

e , (7)

e(α, ϕ) =
(

IN − ϕW
)
y − α1N ,

The maximization of Equation (7) proceeds iteratively and requires det(·) > 0, i.e., the
stability condition |ϕ| < 1, to converge, see [6]. The ML method is compulsory for the
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rook model (4), but may also be applied to the triangular (3); although LS is preferable (see
Table 1).

Table 1. Performance of LS (8) and ML (7) estimators applied to triangular and rook SAR models
(3), (4) with n = m = 32: R-bias = relative bias, R-RMSE = relative root mean squared error, N-test =
p-values of the normality test. The bold character indicates the best methods (LS or ML) over model
classes (Triang and Rook).

Method LS Triang. LS Rook ML Triang. ML Rook α0 = 1

Stat. α̂ ϕ̂ α̂ ϕ̂ α̂ ϕ̂ α̂ ϕ̂ ϕ0

R-bias 0.015 0.013 0.279 0.325 0.295 0.324 0.014 0.014
R-RMSE 0.078 0.078 0.289 0.334 0.302 0.329 0.062 0.066 0.5

N-test >0.5 0.415 0.456 0.267 0.319 0.065 0.221 0.138

R-bias 0.021 0.007 0.330 0.134 0.372 0.148 0.023 0.008
R-RMSE 0.088 0.032 0.339 0.136 0.384 0.153 0.074 0.028 0.75

N-test >0.5 >0.5 0.413 0.135 >0.5 >0.5 0.192 0.052

R-bias 0.007 0.0003 0.004 0.0001 0.049 0.003 0.023 0.0002
R-RMSE 0.053 0.003 0.054 0.0004 0.067 0.004 0.043 0.0002 1

N-test >0.5 >0.5 0.412 0.119 0.126 0.001 0.092 0.001

R-bias 0.0057 0.0001 0.003 0.0000 0.510 0.024 2.270 0.023
R-RMSE 0.047 0.002 0.035 0.0001 0.512 0.024 2.286 0.024 1.025

N-test >0.5 >0.5 >0.5 0.001 >0.5 0.001 0.450 0.001

In the vector representation (5), the LS estimator of parameters δ = [ α, ϕ ]′ of the
models (3), (4) may use the entire sample Z =

[
1N , Wy

]
as

δ̂N =
(

Z Z′
)−1

Z y, (8)

Σ̂N =
(

Z Z′
)−1

σ̂2
e ,

improving the estimator (2) based on N − p(n + m) observations. The matrix Σ̂N provides
the dispersion of estimates and if W is triangular the method is consistent; a formal analysis
is in [24].

Spatial Forecasting. Prediction is one of the central goals of SAR modeling; typical
examples with lattice data are restoring parts of remote-sensing images hidden by clouds
or extrapolating their value outside the observed range. However, existing literature has
mostly concerned with in-sample filtering and interpolation, focusing on techniques of
image sharpening [22], robust denoising [2] and trend estimation [18], also in conjunction
with non-parametric smoothing.

This paper aims to forecast data that are external to the measured perimeter n × m, e.g., on
the right-hand side as {yi,m+k} with i, k > 0 or, in vector form yN+l on units placed beyond
N. By defining h, k, l = 1, 2 . . . H, K, L the forward indexes, the forecast function depends
on the SAR representations, see [15]. Here, we have the lattice form (3), (4), the vector AR
(5) and the reduced MA (6); for the triangular model (3), the 3 predictors are

ŷn+h,m+k = E
(
yn+h,m+k

∣∣yn−i+1,m−j+1
)
, h, k = 1, 2 . . . H, K,

ŷn+h,m+k = α + ϕ
(
ŷn+h,m+k−1 + ŷn+h−1,m+k−1 + ŷn+h−1,m+k

)
/3, (9)

ŷN+l = α + ϕ w′
N+l ŷ, ŷ′ =

[
y11, y21 . . . ynm, ŷN+1 . . . ŷN+l−1 . . . 0

]
, (10)

ŷ =
(

IN+L − ϕ WN+L

)−1
α1N+L, l = 1, 2 . . . L, (11)

where w′
N+l is the (N + l)-th row of the augmented matrix WN+L and the vector ŷ in (10)

is updated with the forecasts. The predictor (11) is nearly automatic, but in the absence of
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exogenous variables provides constant forecasts; on the other hand, the functions (9), (10)
need border values to start. These can be set as ŷ(0)1,m+k = α̂ for all k, and may be improved

by r-iterating the forecasts with the nearby values as ŷ(r+1)
1,m+k = ŷ(r)2,m+k−1, etc. This approach

can extensively be applied to the rook model (4), with regard to its forward elements
yi,j+1, yi+1,j; however, the convergence of ŷ(r)n+h,m+k, as r increases, is not guaranteed and
may give biased forecasts.

The variance of predictors is useful for building confidence intervals and testing
hypotheses. A general expression can be obtained for the representations (6) and (11),
such as

V(ŷ) =
(

IN+L − ϕ WN+L

)−1(
IN+L − ϕ W ′

N+L

)−1
σ2

e ,

Finally, in order to compare the models’ performance, a portion of the observed data, e.g., yi,m−k,
k = 1 . . . K is excluded from the parameter estimation; then the forecasts of each model are
computed ŷi,m−K+k and are compared with the mean absolute percentage error (MAPE) statistic

MAPE =
1

nK

n

∑
i=1

m

∑
j=m−K+1

∣∣∣∣ ŷij − yij

yij

∣∣∣∣. (12)

2.2. Simulations and Applications

We develop simulation experiments to test the performance of LS (8) and ML (7)
estimators, applied to unilateral and multilateral SAR models. We consider the models
(3), (4) with parameters α0 = 1, ϕ0 = 0.5, 0.75, 1.0, 1.025 and border values (α + eij), i.e.,
y00 = 0, etc. Data are generated with the reduced form (6), with matrices as in Figure 2
with zero diagonal; 200 replications on a 32 × 32 lattice (N=1024 cells) are obtained with
Normal disturbances and σ2

e = 1. Performance statistics are the relative bias |ϕ̂ − ϕ0|/ϕ0,
the relative root mean squared errors (the square root of MSE(ϕ̂)/ϕ2

0) and the p-values of the
Normality test of [27]. Since the relative statistics of α̂, ϕ̂ do not depend on the parameter
size, their value is averaged to provide a single indicator of performance.

The results are displayed in Table 1 and Figure 3; the main findings are as follows: LS
(8) is uniformly better than ML (7) when the matrix W is triangular. Its efficiency improves
as ϕ0 → 1, as a consequence of the super-consistency property of LS estimates in SAR
models (e.g., [26]). LS estimates in multilateral SAR models are biased for ϕ < 1 but still
benefit from the super-consistency. Further, unlike time series, the Normal distribution of
LS estimates holds even in the presence of the unit root ϕ0 = 1 (see Figure 3b).

Regarding the ML method (7), we used the Matlab implementation of [6], which is
computationally demanding. However, it significantly improves the estimates of multilat-
eral models, providing good levels of unbiasedness and efficiency when ϕ0 ≪ 1. On the
other hand, it requires conditions of stationarity and its performance in triangular models
is disappointing, meaning that ML is mainly designed for sparse-weight matrices. In con-
clusion, we can state that LS is suitable for unilateral models, whereas ML must be used in
multilateral SAR.

We also carry out two applications to test the performance of SAR models in out-of-
sample forecasting of lattice data. In comparing predictions, one cannot proceed as in
Table 1, because data generated by a certain SAR model will only be better predicted by
that model. Hence, we consider data from external sources.

Random Surface. The first application considers rough random surfaces [28]; these
models are used in physics to study electromagnetic, fluid and plasma phenomena. We
follow an approach based on a fast Fourier transform, where a matrix of random numbers
uij is convolved with a Gaussian filter to achieve a certain spatial autocorrelation. The re-
sulting surfaces g(uij) are random but smooth and one may add further noise to make
them similar to the real data of geostatistics yij = g(uij) + eij.

Figure 4a,b show an example of g(uij) and yij obtained with two Gaussian noises on a
32 × 32 lattice; the computational details are in [24]. The goal is to forecast the last K = 7
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columns (about 22%) of the surface Y with the algorithms (9)–(11). Table 2 reports the
in-sample parameter estimates (with LS and ML methods) of the models (3), (4) and their
MAPE statistics (12).

0.85 0.9 0.95 1 1.05 1.1 1.15

0

10

20

(a)    α  LS,  W Triang.

0.99 0.995 1 1.005

0

10

20

(b)   φ  LS,  W Triang.

0.95 1 1.05 1.1

0

10

20

(c)   α  ML,  W Rook

0.99930.99940.99950.99960.99970.99980.9999

0
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150

(d)   φ  ML,  W Rook

Figure 3. Distribution of LS and ML estimates in 200 replications of the SAR models (3), (4) with
α0=1, ϕ0=1 (green), and mean values of α̂, ϕ̂ (red): Panels (a,b) LS (8) of model (3); Panels (c,d) ML (7)
of model (4).

A triangular SAR(1,3,3) (with three AR parameters) is also fitted to the data, but it
does not improve the forecasts of the constrained (3). However, the best performance is
provided by (3) with ML estimates. The rook (4) performs poorly with the (biased) LS
estimates, whereas it significantly improves with the ML ones; anyway, the path of the
predicted surface in Figure 4d remains disappointing. Ref. [24] provides further results; on
10 replications of the experiment, the mean value of MAPE of (3)-LS is − 37% smaller than
that of (4)-ML.

Table 2. Parameter estimates (with T-statistics in parentheses) of SAR models (3), (4) on the surface
Y(:,1:25) in Figure 4b, and forecast statistics on the data Y(:,26:32).

Model Estim. α̂ ϕ̂1 ϕ̂2 ϕ̂3 R2 MAPE

Triang. (3) LS 0.096 (4.45) 0.893 (40.3) . . 0.686 0.143
Triang. (3) ML 0.247 (15.2) 0.739 (45.1) . . 0.665 0.125
SAR(1,3,3) LS 0.094 (4.42) 0.448 (13.3) 0.097 (2.69) 0.352 (10.1) 0.701 0.140

Rook (4) LS −0.008
(−0.39) 1.008 (50.6) . . 0.788 0.864

Rook (4) ML 0.198 (16.3) 0.795 (64.9) . . 0.753 0.224

Remote Sensing. The second application regards a real case study; we consider high-
resolution elevation data obtained with aerial laser scanners. The sample array Y comes
from USGS [19] and has 340 × 455 pixels (see Figure 5); this would yield a vector SAR
model with 154,700 rows. Further, the terrain morphology may require the inclusion of
spatial trend components (e.g., [18]), such as bivariate polynomials gd(i, j) of degree d ≥ 1.
Given the numerical issues implied by computing W , we only perform analyses with the
LS estimator (2); for a model (3) with a quadratic trend, the forecasting function (9) becomes

ŷi+h,j+k = α + g2(i + h, j + k) + ϕ
(
ŷi+h−1,j+k−1 + ŷi+h−1,j+k + ŷi+h,j+k−1

)
/3,

g2(i + h, j + k) = β1(i + h) + β2(j + k) + β3 (i + h)2 + β4(j + k)2 + β5 (i + h)(j + k),

with h, k = 1, 2 . . . H, K, which can be sequentially managed. The AR part of the rook model
involves forward values in the lower-right side; however, these may be provided by the
polynomial itself: ỹi+h+1,j+k+1 = ĝ2(i + h + 1, j + k + 1).
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Figure 4. Panels (a,b): Simulation of a rough random surface Y of size n = m = 32. Panels (c,d):
Out-of-sample forecasts of Y(:,26:32) with models (3), (4) and predictors (9), (10).

In the prediction analysis, we left the right portion of 55 columns (about 12% of the
array) as out-of-sample data to forecast. LS estimates of the parameters are reported in
Table 3 and graphical results are displayed in Figure 5. Despite the better in-sample fitting
(with R2 = 0.977), the rook model has a disappointing performance both in terms of MAPE
statistic and visual appearance (see Figure 5b). The reason is partly due to LS estimates of
its parameters, with α̂ < 0, ϕ̂ > 1; however, adjusting their values reduces the MAPE but
does not change the (uniform) path of the predicted surface.

Table 3. LS estimates of SAR models (3), (4) with bivariate polynomials (T-statistics are in parentheses)
applied to USGS data [19]: Y(:,1:400) in-sample, Y(:,401:455) forecasts.

Model α̂ ϕ̂ β̂1 β̂2 β̂3 β̂4 β̂5 σ̂2
e , R2 MAPE

Triang. (3) 8.50 0.961 −0.024 −0.011 11 × 10−5 43 × 10−7 −88 × 10−7 338.4 0.848
(25.6) (105) (−10.6) (−5.5) (22.5) (0.73) (−2.1) 0.913 .

Rook (4) −6.12 1.026 0.007 0.016 −58 × 10−6 17 × 10−6 −17 × 10−6 88.15 1.362
(−35.8) (214) (6.3) (15.9) (−22.8) (5.5) (−7.8) 0.977 .

In real-life applications, where small and inner portions of images must be restored,
the spatial polynomials g(i, j) may be fitted locally (around the missing pixels) or may
be replaced by nonparametric smoothers (e.g., [18]). In any event, the role of the AR
component remains fundamental, as the coefficient ϕ̂ is the most significant in both models
of Table 3, with a statistic Tϕ̂ > 100.

(a)  Triangular

100 200 300 400

50

100

150

200

250

300

(b)  Rook 

100 200 300 400

50

100

150

200

250

300

Figure 5. Application of SAR models (3), (4) with quadratic trend to [19] data: Out-of-sample forecasts
of the image portion Y(:,401:455), displayed in pseudocolor.
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3. Point and Polygonal Data

When the data are irregularly distributed in space (either as point processes or polyg-
onal areas), the representation has to change. The spatial process is now defined as
{ys}, s = 1, 2, . . . N; where the index s also applies to the planar coordinates x′s = [ is, js ]
(latitude and longitude) of the polygon centers (geometric or political), see Figure 1c,d.
These variables are irregularly distributed in the plane but have a fixed (non-stochastic)
nature; moreover, they may influence the level of the process ys, according to spatial trends.
Thus, the SAR(1) model becomes

ys = α + ϕ ys,1 + β′xs + es, s = 1, 2 . . . N,

y = α1N + ϕWy + Xβ + e, e ∼ N
(
0, σ2

e IN
)
, (13)

=
(

IN − ϕW
)−1(

α1N + Xβ + e
)
,

where ys,1 belongs to the unit which is closest to the s-th term, and the vector of regressors
x′s = [is, js] may include other covariates.

Unlike the previous section, the adjacency matrix W has an irregular structure, which
depends on the rule of contiguity. The most common rule is to put each observation ys
in relation to its nearest neighbor (NN) term yr, according to the Euclidean distance:
minr{dsr = [(is − ir)2 + (js − jr)2]1/2}. Furthermore, under the unilateral constraint,
the north/west (NW) → south/east (SE) direction may be followed as in the lattice case.
However, polygonal and point data have not lexicographic order; hence, the unilateral
constraint may simply be defined along the N-S direction. In this setting, it is useful to
order the observations {ys, xs} according to the shortest distance from the northern bor-
der, i.e., according to the inverse of the latitude 1/is. Such ordering may be denoted as (is)
or simply (s), and the model (13) can be written in a sequential form as

y(s) = α + ϕ y(s,−1) + β′x(s) + e(s), y(0,−1) = 0, (14)

where y(s,−1) is the north NN of y(s), while the simple NN may be denoted as y(s,1). As in
the lattice case, the property E[y(s,−1)e(s)] = 0 is the basis for unbiased LS estimation
and forecasting.

As an illustration of NN matrices, we simulate N = 30 random points with [is, js] ∼
IU(0, 1)2 and consider q = 3 contiguous terms, see Figure 6. Under the north-south or-
dering of data, the entries of matrices are concentrated around the (null) main diagonal,
and with the unilateral (north) constraint the array is lower triangular. Similarly, to obtain
concentrated matrices, ref. [16] ordered the data according to the sum (is + js), but they
used the simple NN rule. The matrices Wk in Figure 6 provide SAR(3) models but averaged
as W = 1

3 ∑3
k=1 Wk, they yield constrained SAR(3,1). The analogous model to the lattice

model (3) is then

y(s) = α + ϕ
(

q−1
q

∑
k=1

y(s,−k)

)
+ β′x(s) + e(s), (15)

where y(s,−k) is the k-north NN of y(s). Instead, in the multilateral model of Figure 1d one
has q = 4 and the simple NN terms y(s,k).

Unlike regular lattices, polygonal and point data are not equidistant; therefore, it is
useful to consider spatially weighted averages in the model (15). A simple approach is
based the inverse distance weighting (IDW)

y(s) = α + ϕ

( q

∑
k=1

w(sk) y(s,k)

)
+ β′x(s) + e(s), (16)

w(sk) = d−1
(s,k)

/ q

∑
k=1

d−1
(s,k), d(s,k) =

[(
i(s) − i(s,k)

)2
+

(
j(s) − j(s,k)

)2]1/2,
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where [i(s,k), j(s,k)] is the k-NN of the point [i(s), j(s)]. Alternatively, since the inverse dis-

tances decay too fast, one can use the exponential weights w(sk) ∝ λd(s,k) , with coefficient
0 < λ < 1. The resulting model is nonlinear and requires complex estimators; however,
the value of λ may be selected a priori and its effect may be evaluated on the LS-ML
estimates of ϕ.
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Figure 6. Contiguity matrices and planar graphs of N = 30 random centroids on the unit square [0, 1],
based on nearest neighbors (NN). Panels: (a,c) North NN; (b,d) Simple NN. Matrices: W1 first NN
(blue); W2 second NN (red); W3 third NN (green).

Models (15) and (16) admit a vector representation (13), with W triangular or sparse
as in Figure 6. One may also include a lagged term on the exogenous part

y = α1N + ϕWyy + Xβ + WxXγ + e, (17)

this is the Durbin model [6], which is useful when x(s) are autocorrelated, i.e., the points
(is, js) have a non-random pattern. The contiguity matrices in Equation (17) may be
different, e.g., Wy is preferably triangular, while Wx may be sparse, without affecting the
consistency of LS estimates.

3.1. Estimation and Forecasting

The LS estimator of the models (13)–(17) can be obtained from Equation (2) by writing
the models in regression form, as y(s) = δ′z(s) + e(s), with δ =

[
α, ϕ, β

]′ and z(s) =[
1, ȳ(s), x(s)

]′, where ȳ(s) is an average of q NN terms. In the matrix form (8), the LS
estimator of δ is given by

δ̂N =
(
Z′Z

)−1Z′y,

Z =
[
1N , Wy, X

]
, (18)
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which can be applied to the Durbin model (17) by including in Z the term WX. In the case
of triangular W , the estimator (18) is unbiased because E

[
ȳ(s)e(s)

]
∝ ∑k E[y(s,−k)e(s)] = 0

by the recursive computation of residuals. In general, under stationarity one can also prove
the general result √

N
(
δ̂N − δ

) D−−−→
N→∞

N
[
0, E

(
zsz′s

)−1
σ2

e

]
, (19)

see [24], where the convergence is in distribution (D).
For non-triangular W , the LS is generally biased and one must use ML or gener-

alized moments (GM, [7]). The GM solution arises by applying the instrumental vari-
ables (IV) method to the LS estimator (18); by using the matrix of instruments M =[
X, WX, W2X . . . W kX

]
, the projection matrix P = M

(
M ′M

)−1M ′ and the modified re-

gressors V = PZ, the GM estimator is given by δ̃N =
(
V ′Z

)−1V ′y. In the numerical section,
we compare ML and GM estimators with simulation experiments.

In forecasting, we have L out-of-sample units with value yL = 0, whose coordinates
and regressors x′l =

[
1, il , jl , x1l . . . xml

]
are known for all l = 1, 2 . . . L. Their locations

(il , jl) may be inside or outside the observed region; in both cases, they are placed at the
end of the data matrix XN+L. If the data are ordered in a certain direction (e.g., north-
south with i(s) ≥ i(s+1)), and all L units are outside the observed region, and in the
same direction, then the weight matrix is nearly block-diagonal: WN+L = diag

[
WN , WL

]
,

where WL is overlapped to WN for the contiguity of L target units with the observed ones.
In the other cases, it has a more complex structure, with triangular sub-matrices under the
unilateral constraint

WN+L =

[
WNN ONL
WLN WLL

]
The forecasting function of yL depends on the SAR representation used for y; in the

reduced (MA) form of (13), the fitted values and the forecasts are jointly computed as

ỹL = E
(
yL

∣∣ XN+L, WN+L
)
,

ỹN+L =
(

IN+L − ϕWN+L

)−1(
α1N+L + XN+Lβ

)
, (20)

=
[

ỹ′
N , ỹ′

L
]′,

where the joint matrix WN+L has q-entries per row and may use non-uniform (IDW)
weights. The solution (20) is nearly automatic, but in the absence of exogenous variables, it
provides constant forecasts.

The second predictor comes from the structural (AR) representation (13); it is not
automatic and must be managed sequentially by rows as

ŷL = E
(
yL

∣∣ yN , XN+L, WN+L
)
,

ŷN+l = α + ϕ w′
N+l ŷN+l−1 + x′N+l β, l = 1, 2 . . . L, (21)

ŷN+l−1 =
[
y1, y2, . . . , yN , ŷN+1 . . . ŷN+l−1, 0, . . . , 0

]′,
where w′

l , x′l are the l-th rows of the matrices WN+L, XN+L. Note, that for non-triangular
W , Equation (21) involves missing values in the running vector ŷN+l−1. If these values are
provided by Equation (20), then the vector of observations and forecasts at the l-th step
becomes ŷN+l−1 =

[
y1 . . . yN , ŷN+1 . . . ŷN+l−1, ỹN+l . . . ỹN+L

]′ and in the end l = L, and
will only contain the improved forecasts (21).

Refs. [14,17] also discussed solutions based on the best linear unbiased predictor
(BLUP) of Goldberger. This approach arises from the conditional mean and variance of
Gaussian random vectors:
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E
(
yL|yN

)
= µL + ΣLNΣ−1

NN
(
yN − µN

)
,̂̃yL = ỹL + ΣLNΣ−1

NN
(
yN − ỹN

)
, (22)

where ỹL is a subvector of the predictor in Equation (20) and ΣLN , ΣNN come from the
partition of the joint covariance matrix of yN+L, given by

ΣN+L =
(

IN+L − ϕWN+L

)−1(
IN+L − ϕW ′

N+L

)−1
σ2

e =

[
ΣNN ΣNL
ΣLN ΣLL

]
. (23)

The conditional variance V
(
yL|yN

)
of the partition of Gaussian vectors also provides

the dispersion of the forecasts (22), such as

V
(̂̃yL

)
= ΣLL − ΣLNΣ−1

NNΣNL,

this matrix requires the error variance σ2
e , which can be estimated with the in-sample

residuals êN =
(
yN − ŷN

)
of Equations (20).

3.2. Simulations and Applications

To compare the various estimators, we perform simulation experiments on SAR
models (13)–(16) defined on a random grid of N=150 points, uniformly distributed in
the unit square: [is, js]∼IU(0, 1)2, as in Figure 6c. We generate the process {ys} with
an exogenous input xs ∼ IU(0, 2), Normal residuals es∼IN(0, 1), parameters α = 1,
ϕ = 0.65, 0.95, β = −1, contiguity matrices W with q = 1, 3 lags and with north NN and
simple NN links. Subsequently, M = 500 replications are fitted with LS, ML, GM estimators
and relative biases, relative RMSE and p-values of the Normality test were computed for the
coefficients α̂, ϕ̂, β̂ and then averaged. Note, that relativization (e.g., bias(ϕ̂N)/|ϕ0|) allows
to combine the statistics of three parameters to have a single indicator of performance.

The results are reported in Table 4, where “variable grid” means that at each replication
the centroids change, and “IDW weights” refers to the model (16). The Durbin model
includes a lagged term on the exogenous part, as β1x + β2Wx, with coefficients [β1, β2] =
[1,−0.65]. The software used for ML and GM estimates is the Matlab package of [6], but it
does not fit the Durbin model with the GM method. The main conclusions from Table 4
are that ML and GM methods do not improve the LS estimates in the case of unilateral
(triangular) W matrices. However, they significantly outperform LS in the multidirectional
(simple NN) case; in particular, the ML method is the best in terms of MSE. However, these
results are not homogeneous regarding unbiasedness and efficiency, and the GM estimator
may locally have a smaller bias.

Forecasting. As in the lattice case, when comparing the predictions of SAR models
one must consider data generated from autonomous sources. An idea is to sample the
surfaces in Figure 4 at random points is∼IU[1, n], js∼IU[1, m], and define ys as the ter-
rain height; however, the forecasting results were too favorable to the unilateral SAR
model. We then use the real USGS image in Figure 5, with n = 340, m = 455; we sampled
N = 150 pixels and withheld for forecasting L = 30 on the right side, see Figure 7a. We fitted
the constrained SAR (15) with q = 3, xs = [is, js]′, W triangular and sparse, and forecast
functions (20)–(22). The unilateral (west NN) is estimated with LS and the multilateral
(simple NN) with ML.

The experiment is replicated M = 100 times (25 in each direction NS, SN, WE, EW,
obtained by simply rotating the image Y) and the average estimates are reported in Table 5.
Both ML and LS estimates detect non-significant spatial coordinates (β1, β2), which means
that the terrain level ys does not have a (monotone) spatial trend. As in the lattice case,
the fitting statistics σe, R2 of the multilateral model are the best, but they are not confirmed
out-of-sample. The predictor (21) moderately outperforms the naive (20), with a mild
superiority (about 10% on average) of the unilateral model. Notice that the BLUP solution
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(22) mainly improves the multilateral model, whereas slightly worsens the unilateral one.
Figure 7b shows the results of the predictor (21) in a single replication.

Table 4. Results of the simulation experiments on the SAR models (13)–(16) with spatial lags
q = 1–3 and single ϕ. The statistics are average values (over α̂, ϕ̂, β̂) of relative biases, relative RMSE
and p-value of N-test. Bold characters indicate the best results.

W North NN Simple NN
Estimator LS ML GM LS ML GM ϕ Lags

Ave. Rbias 0.0205 0.1338 0.0235 0.1363 0.0287 0.0216 0.65 1
Ave. RRMSE 0.1336 0.2402 0.1831 0.1887 0.1343 0.1581

Ave. Ntest 0.3218 0.2983 0.1675 0.1561 0.3401 0.3337

Ave. Rbias 0.0077 0.1208 0.0098 0.1232 0.0400 0.0075 0.65 1
Ave. RRMSE 0.1396 0.2445 0.1924 0.1873 0.1430 0.1609 (Variable

Ave. Ntest 0.3274 0.3554 0.2291 0.1637 0.2499 0.1626 grid)

Ave. Rbias 0.0340 0.1330 0.0217 0.1324 0.0259 0.0376 0.65 3
Ave. RRMSE 0.1586 0.2416 0.2365 0.1998 0.1390 0.2035

Ave. Ntest 0.2442 0.2612 0.0936 0.1811 0.2559 0.0960

Ave. Rbias 0.0298 0.1289 0.0228 0.1487 0.0208 0.0343 0.65 3
Ave. RRMSE 0.1518 0.2360 0.2228 0.2088 0.1326 0.1963 (IDW

Ave. Ntest 0.2530 0.2561 0.1673 0.1805 0.2900 0.1736 weights)

Ave. Rbias 0.0312 0.0980 0.0248 0.0581 0.0109 0.0164 0.95 3
Ave. RRMSE 0.1475 0.2514 0.3190 0.1208 0.1086 0.1648

Ave. Ntest 0.1516 0.1678 0.0010 0.2611 0.3033 0.1601

Ave. Rbias 0.0663 0.3405 . 0.3333 0.0704 . 0.65 3
Ave. RRMSE 0.2849 0.4659 . 0.4141 0.2764 . (Durbin

Ave. Ntest 0.2584 0.3891 . 0.1286 0.1313 . model)

Table 5. Average values, over 100 replications, of parameter estimates (T-statistics are in parentheses),
and MAPE forecast statistics of the SAR model (15) on random samples of pixels of the USGS image.
Bold character indicates the best results.

Model Estim. ᾱ ϕ̄ β̄1 β̄2 σ̄e, R̄2 MAPE
(20)

MAPE
(21)

MAPE
(22)

Unilateral LS (18) 68.4 0.543 0.012 −0.018 54.3 0.948 0.815 0.830
(west NN) (3.0) (5.1) (0.21) (−0.31) 0.213 . . .

Multilateral ML (7) 76.5 0.492 0.005 −0.009 50.2 0.996 0.951 0.899
(simple NN) (4.2) (6.3) (0.06) (−0.19) 0.328 . . .

As a final application, we consider original point data concerning the measurement
of stable isotopes of oxygen (δ18O) and hydrogen (δ2H) in the groundwater. Mapping
isoscapes is useful for physical monitoring of the hydrological cycle and for anthropological
and forensic investigations, e.g., regarding the path of people’s movement. We consider the
datasets of [29], recorded in South Korea in 2010, with N = 130 and [20], recorded in Mexico
in 2007, with N = 234. We estimate the SAR model (15) with q = 3 for ys = δ18O, δ2H and
xs = latitude, longitude, to forecast about 20% of observations withheld from estimations.
The unilateral constraints of the W matrix are south NN for Korea and west NN for Mexico;
the results are in Table 6 and Figure 8. They confirm the better performance of unilateral
SAR models with the forecast Function (21), especially when the data have significant
autocorrelation (i.e., large |ϕ|) and marked spatial trends (significant β1,2). The reduction in
the MAPE statistics in Table 6 ranges from −18% in Korea, to −38% in Mexico.
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Figure 7. Graphical results of a single replication of the estimates in Table 5: (a) Random sampling of
USGS surface (the points to forecast are in red); (b) Longitudinal display of data and forecasts (21)
(unilateral = green, multilateral = black); (c) Contiguity matrix of the unilateral model with q = 3;
(d) W matrix of the multilateral model (simple NN).
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data, Green = forecasts with W triangular; Black = forecasts with W multilateral. Panels: (a) South-
Korea sample locations; (b) Latitudinal view of Hydrogen isotope; (c) Mexico sample locations;
(d) Longitudinal view of Oxygen isotope.
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Table 6. Parameter estimates (with T-statistics in parentheses) and MAPE forecast statistics of the
SAR model (15) with q = 3 applied to the water isotope data of South Korea δ2H (first block) and
Mexico δ18O (second block). Bold character indicates the best results.

Model α̂ ϕ̂ β̂1 β̂2 σ̂e, R2 MAPE
(20)

MAPE
(21)

MAPE
(22)

Unilateral LS (18) 123.7 0.337 −0.557 −2.51 4.28 0.069 0.065 0.065
(south NN) (1.70) (4.72) (−1.04) (−3.37) 0.478 . . .
Multilateral ML (7) 97.9 0.622 −0.376 −1.98 3.53 0.080 0.079 0.079
(simple NN) (1.69) (9.46) (−0.86) (−3.41) 0.645 . . .

Unilateral LS (18) 4.30 0.636 0.089 0.093 1.28 0.377 0.369 0.370
(west NN) (1.69) (8.17) (3.19) (2.72) 0.336 . . .

Multilateral ML (7) −0.85 0.479 0.053 0.101 1.26 0.600 0.597 0.588
(simple NN) (−0.36) (7.41) (1.88) (2.89) 0.351 . . .

4. Conclusions

In this paper, we have compared unilateral and multilateral SAR models in forecasting
spatial data of both lattice and point types. SAR systems are natural extensions of classi-
cal autoregressions, their difference is in the treatment of the spatial dependence: while
unilateral models choose a single direction in space, as in time series, multilateral models
consider multiple directions. These approaches lead to different contiguity matrices: trian-
gular and sparse, usually computed with the nearest-neighbor approach. While triangular
SAR can be consistently estimated with least squares, multilateral SARs require maximum
likelihood or method of moments; in the latter cases, numerical complexity increases with
the dimension of the contiguity matrices. Instead, LS is not sensitive to the size of the
lattice or the number of spatial units and can manage even large-scale systems; see the
estimator (2). Simulation experiments on small-medium scale systems have shown that
ML and GM are suitable for multilateral models, but LS is preferable for unilateral ones,
especially in the presence of unstable roots (|ϕ| ≥ 1).

These features can be summarized in Table 7, which are vertically dependent; in fact,
the concepts of triangularity, sequentiality, consistency of LS, recursive calculation, chain
rule of forecasting, etc., are closely intertwined in the unilateral case.

Table 7. Summary of the main features of SAR models.

Item Unilateral Multilateral

Matrix Wy Triangular Sparse
System Sequential Simultaneous

Estimator LS ML, GM
Sample size Large Moderate

AR root |ϕ| ≥ 1 |ϕ| ≪ 1
Computation Recursive Iterative
Application Forecasting Analysis

For structural analyses, multilateral models are preferable because the interaction
between spatial units does not occur in a single direction. However, structural analyses are
mainly concerned with the dependence between the variables ys, xs; now, in the Durbin
model (17), the matrix Wx may be sparse (for detecting simultaneous relationships), with-
out affecting the properties of unilateral SAR. The role of Wy in structural models is nearly
ancillary: it has to remove the ACR of residuals es, to have consistent estimates of the
standard errors of β̂. It is unlikely that a specific direction, i.e., a particular Wy triangular,
may hinder this goal.

Things are different in forecasting, unilateral models with ordered data enable recur-
sive calculations, which allow linear predictions (the chain rule of forecasting). Instead,
multilateral models involve forward values which may be pre-estimated only with the
(inefficient) reduced form (20) and require iterations. In the applications we have seen
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that these models benefit from the BLUP improvement (22), but the performance of the
unilateral models with the AR predictor (21) remains better, (see Tables 5 and 6). Regarding
the practical usage of SAR point forecasts, we mention the possibility of using them as
alternatives to non-parametric smoothers (such as Kriging and Kernels), which are unstable
outside the observation perimeter. Further, to overcome the limits of unidirectionality,
one can estimate unilateral models in various directions (e.g., NS, SN, WE, EW), and then
combine their forecasts with weights proportional to their fitting statistics (e.g., R2 or 1/σ̂2

e ).
This solution is suitable for points within the investigated area, but can also be applied to
external points, by using diagonal paths (e.g., NW-SE).
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