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Abstract 11 

The topographic ruggedness index (TRI) is widely adopted for the analysis of digital elevation 12 

models, providing information on local surface spatial variability. In this work, the TRI is 13 

interpreted according to a geostatistical perspective, highlighting its main characteristics and 14 

drawbacks. TRI can be interpreted as an omnidirectional short-range spatial variability index, 15 

computed according to a pixel centered perspective. The simplicity and interpretability of 16 

the index, free from user-dependent selections, promoted its implementation in several 17 

software environments and its application in a wide set of case studies. However, the index 18 

has several drawbacks for its application in earth sciences, such as a strong dependency  on 19 

local slope (it is basically an average adjacent neighbor slope algorithm) and the selection of 20 

different lag distances in the computation of spatial variability along the main directions and 21 

the diagonal ones. We propose a new metric  radial roughness (RRI) in order to solve the 22 

main drawbacks of TRI but maintaining its main philosophy (i.e., pixel centered perspective 23 

and simplicity of the algorithm). The new index corrects for the differences in lag distances  24 

and  resolves the dependency on trend using increments of order 2. The code of the index, 25 

implemented in R statistical language, and test data are provided with the paper 26 

(https://doi.org/10.5281/zenodo.7132160) to promote its implementation in other software 27 

environments. 28 

Keywords: DEM, ecology, geomorphometry, surface roughness, terrain analysis 29 

 30 

1. Introduction 31 

The analysis of surface roughness from digital elevation models (DEMs), analogously to the analysis 32 

of image texture from imagery (Haralick et al., 1973), represents a key element in many 33 
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geoenvironmental, geoengineering and remote sensing applications (e.g., McKean and Roering, 34 

2004; Glenn et al., 2006; Wilson et al., 2007; Woodcock et al., 1988, Różycka et al., 2017). But the 35 

possible applications can be broader, including for example ecological applications (e.g., Nelleman 36 

and Thomsen, 1994) and the study of distribution of human residential development (Vukomanovic 37 

and Orr, 2014). It is not our intention to provide an epistemological discussion on the concept of 38 

roughness in earth sciences and on the related terminology. In the context of earth sciences (Shepard 39 

et al. 2001; Smith, 2014) and geomorphometry (Pike, 2000; Wilson and Gallant, 2000) there is not a 40 

consensus on a definition of roughness, and multiple related terms are frequently adopted, such as 41 

“fabric”, “ruggedness”, “rugosity”, “texture”, “waviness” and others. Here, surface roughness (further 42 

referred for brevity as roughness) is intended as synonym of surface texture and hence it is a complex 43 

and multiscale characteristic of a surface’ spatial variability. Accordingly, this interpretation deviates 44 

from the definition provided in surface metrology (e.g., Leach, 2013), where roughness is referred to 45 

short-wavelength surface texture features. When the analysis of roughness is performed on a digital 46 

elevation model (DEM), represented as a regular grid (i.e., a raster image), there is a complete 47 

algorithmic convergence between image texture and surface texture (Haralick et al., 1973; Woodcok 48 

et al. 1988; Atkinson and Lewis, 2000; Ojala et al., 2002; Lucier and Stein 2005; Garrigues et al., 2006; 49 

Balaguer et al., 2010; Trevisani et al. 2012). Moreover, the same concepts can be adopted to real 3D 50 

surfaces as well as to elevation points clouds (Pollyea and Fairley, 2011), given the proper adaptation 51 

of algorithms. It should be also highlighted that with usual DEMs, which are a 2.5D representation of 52 

solid earth surface (Burrough and McDonnel, 1998) the roughness computed from them is an 53 

apparent roughness, given that this typology of DEM represents the projection of a 3D surface on an 54 

horizontal plane. 55 

The topographic ruggedness index (TRI, Riley et al., 1999) is a widely adopted measure of short-range 56 

roughness. It was initially developed in the context of ecological analysis because many biosphere-57 

related processes are influenced by surface roughness (Nellemann and Thomsen, 1994; Jenness, 58 

2004; Sappington, 2007; Wilson et al., 2007; Hagerty et al., 2011). Even though more statistically robust 59 

and informative roughness indexes can be considered (e.g., Herzfeld and Higginson, 1996; Trevisani 60 

and Rocca, 2015; Trevisani et al. 2023), the approach underlying TRI is still valuable and it is worth 61 

trying to improve its drawbacks while keeping its appealing features. TRI is particularly interesting in 62 

earth sciences and ecology applications because of its pixel centered perspective in evaluating 63 

roughness. Another characteristic that made popular this index is the extreme simplicity of the 64 

algorithm (Wilson et al., 2007) that fostered its implementation, efficiently and easily, in multiple 65 

software packages, e.g. GRASS GIS (GRASS, 2023), MICRODEM (USNA, 2023), SAGA GIS, Terra 66 

package for R (RSPATIAL, 2023), Whitebox (Whitebox Geospatial, 2023), ArcMap (ESRI, 2023), and 67 

others. However, TRI has some severe limitations, often leading to a misuse of the index.  A first 68 

limitation is the strong dependency of the index to local slope, unlike other indexes (Woodcock, 1977; 69 

Guth 1999 and 2001; Wilson and Gallant, 2000; Grohmann et al., 2011; Trevisani et al. 2023). Other 70 

issues are related to the usage of different pixel distances along the main directions (NS and EW) 71 

with respect to the diagonal ones and the use of only 8 samples in the estimation of the index, making 72 

it highly sensitive to noise.  73 
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Accordingly, the main aim of this technical note is to provide a new implementation of the TRI, that 74 

maintains the main philosophy behind it (i.e., simplicity and pixel centered perspective) while 75 

improving its main drawbacks. The presented improvements are based on ongoing research on 76 

geostatistical-based approaches for roughness analysis, that led to the recent implementation of an 77 

efficient and informative geostatistical algorithm (Trevisani and Rocca, 2015; Trevisani et al., 2023; 78 

Trevisani, 2023), capable of highlighting specific aspects of roughness. Moreover, the reanalysis of 79 

TRI from the geostatistical perspective permits  highlighting its key features and finding a clear 80 

pathway for its improvement.  81 

The implementation provided here refers to the original TRI implementation relying on a 3x3 kernel; 82 

alternative extensions devised for multiscale analysis are not considered. Some approaches, for 83 

example, generalize TRI considering larger kernels with weights or adopt smoothing approaches prior 84 

to the computation (Wilson et al. 2007). These variations are not considered here because they 85 

increase the complexity of the approach, making less convenient its application with respect to other 86 

more flexible and controllable approaches based on geostatistics (e.g., Garrigues et al., 2006; 87 

Balaguer et al., 2010; Trevisani and Rocca 2015; Trevisani et al, 2023). Moreover, the improvements 88 

proposed here can still be adopted for multiscale analysis without modifications, using multilevel 89 

upscaling of the original DEM (e.g., Wilson et al., 2007; Lindsay et al. 2019; Newman et al., 2022). It 90 

should be also noted that the dependence on slope can be filtered out by calculating TRI on a residual 91 

DEM (Guisan et al., 1999; Wilson and Gallant, 2000; Ilich et al., 2021), also known as topographic 92 

position index (TPI). TPI also suffers because it does not consider the different calculation distances 93 

along the diagonals.  However, as discussed in Trevisani et al. (2023), there are different approaches 94 

and different calculation parameters that can be selected for deriving the residual DEM, generating 95 

some subjectivity in its derivation. The solution adopted here is unequivocal and the modified index, 96 

as the original one, doesn’t require user-based choices, apart from the resolution of the input DEM. 97 

 98 

2. Methodology 99 

2.1 TRI according to geostatistics 100 

TRI has clear connections with geostatistical spatial variability estimators; in fact, differences between 101 

pixel values separated by a given lag distance (further referred as directional differences, DDs) are 102 

the building blocks of estimators of spatial variability (Isaaks and Srivastava, 1989; Goovaerts, 1997; 103 

Chilès and Delfiner 2012), such as the variogram (eq. 1), the madogram (eq. 2) and the robust version 104 

based on the median of absolute differences (MAD, Trevisani and Rocca, 2015).  105 

𝛾(𝒉) =
1

2N(𝐡)
∑ [𝑧(𝒖𝛼) − 𝑧(𝒖𝛼 + 𝒉)]2𝑁(𝒉)

α=1 = 1/2
1

𝑁(𝒉)
∑ 𝛥2(𝒉)𝛼 =

𝑁(𝒉)
𝛼=1 1/2 ⋅ mean(𝛥 2(𝒉))  106 

 (1) 107 
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𝛾(𝒉)𝑝 =
1

2N(𝐡)
∑ |𝑧(𝒖𝛼) − 𝑧(𝒖𝛼 + 𝒉)| 𝑝

𝑁(𝒉)
α=1 =

1

2
⋅ mean(|𝛥(𝒉)𝛼|𝑝)  with p = 1   108 

 (2) 109 

 110 

where 𝛥(𝒉)𝛼 = 𝑧(𝒖𝛼) − 𝑧(𝒖𝛼 + 𝒉). In Eqs. (1)-(2), 𝒉 is the separation vector (lag) between two 111 

locations (u), 𝑧(𝒖) is the value of the variable of interest in the location u (e.g., elevation, residual 112 

elevation, band intensity, etc.), and 𝑁(𝒉) is the number of point pairs with a separation vector 𝒉 113 

found in the search window considered. Hence, 𝛥(𝒉)𝛼 = 𝑧(𝒖𝛼) − 𝑧(𝒖𝛼 + 𝒉) represents a given DD. 114 

The main difference between TRI and geostatistical approaches relies on the way in which the DDs 115 

are sampled from the local spatial domain considered (e.g., search window or kernel, the two terms 116 

are used interchangeably). In the original formulation, TRI is calculated with a 3x3 kernel, considering 117 

the eight differences between the central pixel and the external ones (figure 1 left). Accordingly, it 118 

represents a radial measure of spatial variability. In a usual geostatistical approach (figure 1, right), 119 

with a 3x3 window, the set of included DDs in the estimation would be different and much larger. 120 

Moreover, with the geostatistical approaches adapted to geomorphometry (Trevisani and Rocca 121 

2015; Trevisani et al., 2023) the set of samples is still larger and includes a correction for diagonal 122 

distances. In the examples provided in figure 1, we don’t consider the issue of the different lag 123 

distances between main directions and diagonal ones; this topic will be discussed later. Moreover, it 124 

is worth noting that the directional differences of TRI if divided by the lag distances are essentially 125 

(discrete) directional derivatives radiating from the center, and hence related to the divergence. 126 

 127 

 128 

Figure 1. Example of selection of DDs for TRI (left) and for an hypothetical geostatistical estimator of 129 

omnidirectional variability (right). Blue arrows represent directional differences with lags of 1 pixel and 130 

the light blue with a lag of √2 pixels.  131 

 132 

In the original formulation of Riley et al. (1999), TRI is defined as the square root of the sum of the 133 

squared DDs; if normalized by the number of DDs (i.e., divided by 8), it is the square root of the mean 134 

of the squared DDs (eq. 3); accordingly, it is analogous to the square root of the variogram (eq. 1), 135 
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apart from the division by 2. Ultimately, it provides an omnidirectional measure of spatial variability 136 

for a lag distance of 1.207 px, where px is the non-SI unit pixel. 137 

𝑇𝑅𝐼𝑠𝑞𝑟𝑡=√
1

 8
∑ 𝛥2(𝒉𝜶)𝛼

8
𝛼=1      (3) 138 

 139 

An improved version, as implemented in Terra package and in most software, computes the index 140 

by means of the absolute value of DDs (e.q. 4, Wilson et al., 2007), given that squared DDs are very 141 

sensitive to data contamination. Accordingly, it is like an omnidirectional madogram (eq. 2).  142 

𝑇𝑅𝐼 =
1

 8
∑ |𝛥(𝒉𝜶)𝛼|8

𝛼=1      (4) 143 

The last version is convenient from the interpretative point of view because it provides the mean 144 

absolute difference in elevation observed by the central pixel respect to its neighbors. However, the 145 

average lag distance is 1.207 px, which is a little unpractical from the interpretative point of view; 146 

moreover, the different lag distances can generate various biases with anisotropic features depending 147 

on their orientation, wavelengths, and spatial variability characteristics. 148 

The evident similarities with geostatistics explain very clearly the dependency of TRI on slope; in fact, 149 

in geostatistics, the variables from which to calculate the spatial variability/continuity indexes should 150 

be at least in conditions of intrinsic stationarity (Isaaks and Srivastava, 1989). This means that in the 151 

considered spatial domain (i.e., a 3x3 window for TRI) there should not be a trend, representing long-152 

range variations. If a trend is present, the estimates of spatial variability would be biased. This is 153 

evident with TRI; if this index is applied on a perfectly smooth but sloping face, it will return a non-154 

zero result. In ecological applications the influence of slope can be the intended result; for example, 155 

the main factor controlling animal movement could be the overall spatial variability, considering both 156 

short-range (the residual) and long-range (the trend) components. However, for most earth sciences 157 

related applications, such as for deriving proxies of flow impedance and for geomorphological 158 

interpretation, the short-range roughness is the object of the study. For this kind of aim, TRI should 159 

not be applied directly to a DEM, otherwise it will represent a proxy of slope more than a measure of 160 

short-range roughness (figure 2). For the 2 m resolution DEM represented in figure 2 the correlation 161 

between TRI and slope is 0.989. As reported above, one adopted solution the computation of TRI on 162 

a detrended surface (Wilson et al. 2007; Ilich et al., 2021); however, the detrending can be performed 163 

in different ways and this induces higher complexity and user choices (Trevisani et al., 2023). We 164 

present a solution that resolves these issues maintaining the simplicity and the pixel centered 165 

perspective of the original algorithm. The current implementation in R is devised for DEMs and 166 

imagery represented in a projected coordinate system. For working in geographical coordinates, the 167 

algorithm has been adapted in MICRODEM according to the latitude/longitude distance corrections 168 

(Guth and Kane, 2021). 169 
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 170 

Figure 2. Example of contrasting local surface roughness for an Alpine glacial environment (top left: 171 

DEM; top right: hillshade). Calculation of conventional TRI (bottom right) highlighting the strong 172 

dependence on slope (bottom left). The 2 m resolution DEM has been derived from an airborne Lidar 173 

survey (Trentino, Italy). Color scales for slope and TRI are histogram equalized. 174 

 175 

2.2 The modified algorithms  176 

Accordingly, we present two main modifications of TRI original formulation (eq. 4) that, while 177 

maintaining the simplicity of the original approach, remove the effect of slope and correct for 178 

different lag distances. These modifications lead to the definition of a short-range radial roughness 179 

index (RRI). The algorithms are implemented in R using the “Terra” library (RSPATIAL; 2023). However, 180 

the algorithms can be implemented easily in any GIS and image analysis environment; the code and 181 

test data provided should serve as the basis for implementing it in any environment.  For example, 182 

these have been also implemented in the open source software MICRODEM, written in the Delphi 183 

(object Pascal) language (Guth, 2023). 184 
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In terms of software implementation, referring to the layout of pixels indexing for 3x3 kernel in figure 185 

3, the pseudocode of conventional TRI can be expressed as: 186 

𝑇𝑅𝐼 =
1

8
∑ |𝑧𝑖 − 𝑧5|9

𝑖=1
𝑖≠5

       (5) 187 

that is the mean of absolute difference between the central pixel and its eight surroundings. 188 

 189 

 190 

Figure 3. Pixels indexing layout for 3x3 kernels adopted for representing the pseudocode of TRI. 191 

 192 

2.2.1 TRIK2: removing the influence of local slope 193 

The impact of local slope/trend can be filtered out with the same approach based on increments of 194 

order-k used in geostatistics (Chilès and Delfiner, 2012) and recently implemented in the algorithm 195 

for roughness analysis of Trevisani et al. (2023). In fact, the detrending can be avoided by exploiting 196 

the capability of increments (in this case differences) of order K to filter out a polynomial trend of 197 

order k-1 (Chilès and Delfiner, 2012), the core idea behind generalized covariances in geostatistics. 198 

For example (figure 4), considering the differences of differences (increments of order 2), it is possible 199 

to filter out a trend of order 1, i.e., a planar trend in 2D. The modeling of the trend with a simple 200 

planar trend is a reasonable assumption when considering short lag distances. For longer distances 201 

quadratic or cubic surfaces should be considered (Burrough and McDonnel, 1998) and hence higher 202 

order increments. 203 

 204 
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Figure 4. Example (1D) illustrating how the differences of order 2 can be computed with one convolution 205 

for lags of 1 px (in the formula T indicates transposition). An analytical example for computing the 206 

differences of order 2 centered on the pixel 𝑧2 is shown. 207 

 208 

Accordingly, the new TRIK2 estimator (in which “K2” is reminiscent of increments of order 2), referring 209 

to the pixel indexing layout of figure 5, is derived with the following pseudocode: 210 

𝑇𝑅𝐼𝐾2 = (|−𝑧1+2𝑧7 − 𝑧13| + |−𝑧11+2𝑧12 − 𝑧13| + |−𝑧21+2𝑧17 − 𝑧13| + |−𝑧23+2𝑧18 − 𝑧13| +211 
|−𝑧25+2𝑧19 − 𝑧13| + |−𝑧15+2𝑧14 − 𝑧13| + |−𝑧5+2𝑧9 − 𝑧13| + |−𝑧3+2𝑧8 − 𝑧13| + |−𝑧7+2𝑧13 −212 

𝑧19| + |−𝑧12+2𝑧13 − 𝑧14| + |−𝑧17+2𝑧13 − 𝑧9| + |−𝑧18+2𝑧13 − 𝑧8|)/12   (6) 213 

 214 

 215 

Figure 5. Pixel indexing layout for a 5x5 kernel adopted for the pseudocode of TRIK2 216 

 217 

A graphical representation of the approach is reported in figure 6. It should be noted that TRIK2 can 218 

be computed also with a 3x3 kernel (figure 6, orange and red arrows in the central pixel); however, 219 

only 4 DDs of order 2 are used (directions N-S, NE-SW, E-W and SE-NW), leading to a potentially 220 

noisy metric. With the 5x5 kernel, 12 DDs of order 2 are used, leading to larger number of samples 221 

to compute the index and hence more statistical stability respect to the original formulation. As done 222 

for TRI, it is worth noting that, given the layout of  figure 6, dividing the DDs of order 1 and 2 by the 223 

lag distance one obtains the (discrete) directional derivatives of order 2 radiating from the central 224 

pixel, and hence there is a relation with the discrete Laplacian operator. Therefore, like the Laplacian 225 

operator, TRIK2 is able to detect sharp edges and, in general, high frequency (i.e. short range) features, 226 

which is the case of short-range roughness. Clearly, TRIK2, like the Laplacian, is affected by high-227 

frequency noise. On the one hand, it is clear that the measurement of a quality such as roughness 228 

requires that noise of comparable frequency, i.e. 1 px-1, be negligible. On the other hand, the fact that 229 

TRIK2 comes from the mean of 12 values, each of which corresponds to a 1D discrete Laplacian 230 

operator, as shown in Eq. (6), reduces the effect of noise. 231 

 232 
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  233 

Figure 6. The calculation is performed in one convolution, as in figure 4 for the 1D case; however, for 234 

illustrative purposes it can be interpreted as two step-convolution: step 1 (left) computation DDs of order 235 

1; step 2, computation of DDs of order 2 from the differences (green squares) computed in step 1. Blue 236 

arrows represent directional differences of order 1 with lags of 1 px and the light blue with a lag of √2 237 

pixels. Red arrows represent directional differences of order 2 with lags of 1 px and the orange with a 238 

lag of √2 px. 239 

 240 

This solution resolves the algorithmic dependency on local slope as shown in figure 7, where it is 241 

applied on the same high-resolution DEM of figure 2. For this DEM, the correlation between TRIk2 242 

and slope is 0.753. 243 
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 244 

Figure 7. TRIK2 can be applied directly to a DEM, the effect of local slope is automatically filtered (color 245 

scale histogram equalized). 246 

 247 

2.2.2 Radial roughness index 248 

The potential bias related to the different lag distances between main directions and the diagonal 249 

ones can be reduced with the same approach adopted by Trevisani et al. 2015, based on bilinear 250 

interpolation. In particular (figure 8) bilinear interpolation is adopted to derive an elevation value at 251 

a distance of 1 px along the diagonals. Accordingly, using the weights of bilinear interpolation is 252 

possible to modify the code for TRIK2 so as to calculate the differences at the same 1 px distance in 253 

all directions (figure 8). The modified algorithm is named radial roughness index (RRI) and its 254 
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formulation (r function RRI()) is fully reported in the shared R code 255 

(https://doi.org/10.5281/zenodo.7132160).  256 

 257 

Figure 8. Example of computation of DDs of order 2 correcting for the different lag distance between 258 

the DD in NS direction (1 px) and NE-SW direction (√2 px). 259 

 260 

From the visual perspective RRI (figure 9 top) apparently produces the same patterns to TRIk2 (figure 261 

7); however, in correspondence of anisotropic features there could be marked differences (figure 9 262 

bottom) and most of the time RRI will compute lower values. In fact, for the DEM considered, there 263 

are only 0.2% of cases in which the differences between TRIk2 and RRI are lower than -0.02 m. In fact, 264 

RRI will provide lower values than TRIk2 in presence of anisotropic features with wavelengths longer 265 

than 2√2 px in the direction of maximum spatial variability, depending on their orientation; however, 266 

with anisotropic features whose wavelength is shorter than 2√2 px, depending on their orientation, 267 

RRI could return higher variability than TRIK2.   268 
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 269 

Figure 9. Short-range radial roughness computed on the high-resolution DEM with the RRI algorithm 270 

(top). The differences with TRIK2 (bottom) can be relevant in presence of anisotropic features. 271 

 272 

Discussion and conclusion 273 

The solution provided is simple and easy to implement, and this should be preferred to the well-274 

known TRI when the focus is on short-range radial roughness without the effect of slope. RRI 275 

minimizes the bias in spatial variability estimation and improves the interpretation of the index, that 276 

now is referred to a 1 px lag. The applications of RRI are analogous to those of TRI, which is a measure 277 

of topographic heterogeneity. However, RRI highlights the effects of short-wavelength terrain 278 

undulations, whereas TRI depends on both local slope and short-wavelength undulations.  For the 279 

DEM shown in the figures here, RRI decreases the correlation between TRI and slope from 0.989 to a 280 
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correlation of 0.753 between RRI and slope; the new name emphasizes that it is a new and 281 

independent parameter and not just another measure of slope. 282 

From the set of twelve DDs of order 2 (corrected or not for diagonals) one can be tempted to consider 283 

other estimators with respect to the mean, such as the median and the minimum. The median could 284 

reduce the impact of hotspots and the minimum can be interesting from the ecological perspective, 285 

given that very often the governing driver is the lowest impedance found in the surrounding 286 

directions. However, the low number of samples limits this kind of application. For example, the 287 

adoption of the median as estimator would be analogous to MAD based estimators (Trevisani and 288 

Rocca 2015; Trevisani et al., 2023) including MADk2, the version using increments of order 2. However, 289 

for MAD and MADk2 (figure 10 bottom right) a much larger set of DDs is generally used for deriving 290 

the indexes of roughness (omnidirectional roughness and anisotropy). With MAD, for statistical 291 

reasons, it is suggested to use at least a 5 x 5 window, permitting to select 25 DDs in each of the 4 292 

directions (main ones and diagonals); ultimately, for the isotropic short-range roughness 100 DDs are 293 

used. MAD approach is more robust to non-stationarity and abrupt transitions (e.g., figure 10). 294 

Moreover, this approach permits computing other roughness indexes such as anisotropy and the 295 

possibility to select different lag distances.  296 

RRI can be considered a valid option as an omnidirectional short-range roughness metric, when the 297 

pixel centered perspective is significant for the study at hand; otherwise, the geostatistical estimators 298 

provide a more flexible alternative, with a sound theoretical framework. The implemented code and 299 

test files (DEM and outputs presented in this note) are available (Trevisani, 2023), promoting the 300 

implementation in  readers’ preferred software.  301 

Finally, as far as computational efficiency is concerned, calculating RRI for the DEM considered here 302 

(716x943 px) takes 3.46 s with a 3.2 MHz 8th Gen. Intel Core i7 CPU with 16 GB RAM. It is therefore a 303 

program that can run on any PC currently available. Moreover, the current implementation can be 304 

further improved for computing performance.  305 

 306 



14 
 

 307 

Figure 10. For a detail of the test area of figure 2, comparison of short-range roughness computed with 308 

RRI and with MADk2 (Trevisani et al., 2023). The latter has been computed with a lag of 1 px, with a 3x3 309 

(bottom left) and 5x5 (bottom right) square search window. MAD is conceived to be more robust to 310 

non-stationarity and abrupt morphological transitions, permitting a sharper representation of 311 

roughness.  312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 
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