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Featured Application: The Artificial Neural Networks developed could be very useful for a fast
and reliable assessment of buildings energy consumption without the use of specific energy sim-
ulation software.

Abstract: Building energy modeling (BEM) is used to support (nearly) zero-energy building (ZEB)
projects, since this kind of software represents the only available option to forecast building energy
consumption with high accuracy. BEM may also be used during preliminary analyses or feasibility
studies, but simulation results are usually too detailed for this stage of the project. Aside from that,
when optimization algorithms are used, the implied high number of energy simulations causes very
long calculation times. Therefore, designers could be discouraged from the extensive use of BEM
to conduct optimization analyses. Thus, they prefer to study and compare a very limited amount
of acknowledged alternative designs. In relation to this problem, the scope of the present study
is to obtain an easy-to-use tool to quickly forecast the energy consumption of a building with no
direct use of BEM to support fast comparative analyses at the early stages of energy projects. In
response, a set of automatic energy assessment tools was developed based on machine learning
techniques. The forecasting tools are artificial neural networks (ANNs) that are able to estimate the
energy consumption automatically for any building, based on a limited amount of descriptive data
of the property. The ANNs are developed for the Po Valley area in Italy as a pilot case study. The
ANNs may be very useful to assess the energy demand for even a considerable number of buildings
by comparing different design options, and they may help optimization analyses.

Keywords: building energy modeling; artificial neural network; building energy consumption

1. Introduction and Research Scope

The design of zero-energy buildings (ZEBs) [1] is aimed at the achievement of the
highest energy performance level in buildings, therefore leading to the lowest energy
demand as well as the lowest operating costs due to energy consumption.

On the other hand, reaching ZEB standards also implies extra costs in construction,
which may increase by up to 15% [2].

However, an excellent energy performance level similar to ZEB standards may also be
reached through cost-effective design choices, finding the optimal balance between energy
consumption and local generation. For instance, slightly higher energy consumption may
be accepted in order to save the cost of construction due to the building envelope or heating,
ventilation and air-conditioning (HVAC) system.

Aside from that, when pondering energy design choices, several limits and constraints
must also be taken into account, such as the maximum area available to install the photo-
voltaics (PV) system, the maximum volume of the biofuel tanks or the maximum thickness
of the walls. A wise building energy designer is able to manage this design complexity, but
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still, the project configuration he or she chooses may not be the best solution among all
the feasible possibilities. In fact, achieving the optimal solution requires evaluating such a
huge number of design parameters and alternative configurations that it seems unrealistic
to be managed without the help of an automated multi-criteria optimization tool.

In order to achieve the best feasible building–system configuration, energy optimiza-
tion tools should therefore be used from the early design phases [3,4]. Nonetheless, during
the early design steps, such as in feasibility analyses, a plethora of design parameters
still needs to be defined, typically pertaining to both building geometry and construction.
Therefore, a lot of alternative design configurations should be compared so as to make the
optimal choices. This is even more important if we consider that energy projects should
also embed lighting, comfort and indoor air quality assessments in addition to the energy
consumption forecasts. Moreover, these kinds of analyses should also be coupled with
at least financial payback estimations or life cycle assessments in order to identify the
most cost-effective configuration, since economic feasibility obviously plays a huge role in
energy projects.

In this context, the authors of the present research paper suggest developing a set of au-
tomatic energy assessment tools based on machine learning techniques. These forecasting
tools are meant to automatically estimate the energy consumption for any building on the
basis of a limited amount of descriptive data of the property, which is suitable for the early
design stages in a project. The aim is to provide an easy-to-use and extremely fast energy
forecasting tool that can easily be used during the preliminary energy assessments of a
project, as well as in comparative analyses or even in tandem with optimization procedures.

In particular, the authors have developed several artificial neural networks (ANNs) to
forecast the main contributions to a building’s yearly energy consumption, such as heating
needs, cooling needs, electricity consumption, contribution from ventilation air flow rates,
solar gains and the building envelope. The ANNs developed could be very useful in the
fast assessment of the energy demand for a building or even for a considerable number of
buildings together, allowing the comparison of different design options and helping with
identifying the optimal energy project among multiple alternatives.

This research is focussed on the Po Valley area in Northern Italy, which is a zone
with homogeneous weather characteristics and hosts a population of about 20 million
inhabitants today.

2. Literature Review

Energy assessment methodologies, as far as the current scientific literature is con-
cerned, could be categorized into top-down and bottom-up strategies [5]. Top-down
approaches assess the energy consumption in relation to its major macroeconomic drivers,
while bottom-up methods evaluate the energy consumption related to more specific end-
use information.

2.1. Energy Simulation Methods: Top-Down Approaches

Top-down approaches analyse a large group of buildings as if they were one sin-
gle unit and study the interactions between energy use and the economy, population,
technology or climate. A huge number of external factors are, in fact, significant in the
determination of energy consumption and production. Such factors include, to name a
few, demographic growth, macroeconomic indicators, market, construction and demolition
rates, policy transformations, energy price, weather, consumer preferences and technologi-
cal innovation [6]. In other words, top-down strategies capture the relationship between
energy use and its major drivers, which is what makes these approaches extremely use-
ful for estimating energy consumption at an urban scale, when it is crucial to determine
the effects on the energy demand due to ongoing long-term changes. Top-down models
are based on statistical inference, and they can be categorized according to the variables
analyzed (e.g., economic, technology, physical or mixed variables). Econometric models are
primarily based on prices and incomes. Economic variables may comprehend social or
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economic conditions, and they capture the effects of policies and market trends on energy
use. Technological models link energy consumption to the widespread characteristics of the
stock, while physical models rely on climate, weather and temperatures. One of the first
applications of a top-down approach can be found in Hirst et al. [7], where the authors
developed an econometric model to assess residential energy use over time. Their model
was sensitive to changes in technology, population and the economy. Other top-down
approaches for energy consumption estimation have been developed for several countries,
such as the USA, Japan, Sweden, Germany, the UK [8–11], Norway [12], Denmark [13],
China, Canada, Spain [12], Turkey [14] and New Zealand [15].

Top-down models only use aggregate data, which is both a strength and a weakness.
On the one hand, aggregate data are easier to collect, and no detailed analysis of buildings
is required. Moreover, they are able to include historical information, producing models
very reliable for describing aggregated trends for future predictions in a stationary market,
capturing the long-term effects of macroeconomic phenomena on energy demand. On
the other hand, they do not provide appropriate predictions if significant changes happen
in the economy, technological innovation or climate. Historical data give inertia to the
model, and significant errors may occur because social, economic and weather conditions
are likely to change over time. Most importantly, top-down methods cannot give sufficient
knowledge about single buildings or single energy end uses, and they can only represent
energy consumptions at an aggregate level.

To sum up, top-down methodologies are preferred when the objective is to underline
the connection between energy use and different socioeconomic aspects. As much as
those techniques are very useful for urban, regional and national planning and large-scale
modeling, the building designer cannot rely on them for identifying specific areas to be
enhanced or for scheduling energy efficiency interventions if our analysis works at a
portfolio level.

2.2. Energy Simulation Methods: Bottom-Up Approaches

Bottom-up approaches relate energy consumption to more detailed buildings’ char-
acteristics, such as systems and installations, geometry and shape, the thermodynamic
properties of construction materials, external climate, indoor set-point temperatures, occu-
pancy and relevant schedules. Since the level of a building’s knowledge is highly detailed,
the accuracy of the estimate allows for a reliable assessment of the energy demand at the
single-building scale.

Bottom-up approaches can still be divided into two different categories [5]: statistical
methods and engineering methods. Statistical methods identify the relationship between
buildings’ characteristics and their energy demand, relying on statistical inference. These
approaches work similar to top-down strategies, sharing the strength of those techniques
in applicability and straightforwardness, even though they use disaggregated data. Sta-
tistical methods include regression models, conditional demand analyses and artificial
neural networks.

Regression analysis is a reliable and fast method to assess the energy demand in
buildings. It is based on the determination of the statistical predictors, which are expected
to influence the energy consumption of a building. A comprehensive discussion on the
use of regression analyses to predict energy consumption in the residential sector can be
found in the work of Fumo and Rafe Biswas [16], where the authors compared simple,
multiple and multivariate linear regressions against non-linear regression models. Other
works studied the complex selection process of predictors (i.e., independent variables),
such as in the work of Chidiac et al. [17] for the Canadian office building stock, the work of
Catalina et al. [18] for three different climatic zones (Moscow, Bucharest and Nice) and the
work of Amiri et al. [19] for commercial buildings in the U.S.

Conditional demand analysis (CDA) is another statistical technique for modeling
buildings’ energy demand which performs a regression that splits the energy consumption
into contributions given by each end use appliance. In CDA approaches, the energy require-
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ment is expressed as a sum of the energy consumption referring to each of the appliances
working in the building. Thus, energy demand is directly related to equipment features,
building characteristics or utilization patterns like thermostat settings or occupant behavior.
Since the CDA runs a regression based on end uses, information is collected through
surveys and utility data. A CDA was first employed in the work of Parti and Parti [20],
where the authors presented a set of twelve cross-section regression analyses representing
the monthly household demand for electricity in San Diego. Other interesting applications
can be found in a study by Lafrance and Perron [21], where a CDA regression method
was applied to electricity consumption in Québec, Aydinalp-Koksal and Ugursal [22], in
which the authors modeled the energy use for Canada at a national-level, and in a study
by Matsumoto [23], where the CDA was applied to Japanese household consumption.

The artificial neural network (ANN), or simply the neural network (NN), is a mathe-
matical model inspired by the functioning of biological connections between the neurons
in animals’ brains which grants learning processes. An NN builds a parallel mathematical
model based on the interconnected structure of biological neural networks. The NN tech-
nique for modeling an individual building’s energy consumption originated and evolved
in the 1990s. The work of Park et al. [24] contains one of the first applications of an ANN
to forecast the electric load in the Seattle and Tacoma area. Later, Aydinalp et al. [25]
developed an NN model to predict the Canadian residential energy consumption. They
stated that NN techniques are highly suitable for determining causal relationships among
a large number of parameters. More recently, Biswas et al. [26] created an NN to assess
residential building energy consumption based on the case study of the TxAIRE Research
and Demonstration House.

Finally, engineering physics-based methods simulate, with the help of simulation
engines, the building’s energy consumption through the study of the thermodynamic
properties that determine how the building, as a thermodynamic system, interacts with
the outdoor environment [27]. Engineering methods are the most accurate ones, but they
also require an intimate knowledge of the buildings. It is necessary to collect a plethora of
information about their geometry, shape, orientation, glazing, materials, infiltration and
ventilation rates, occupancy, schedules, internal loads, installations, set-point temperature
and several other building characteristics and features. A concrete knowledge of the
climatic area in which the building is located is also required, comprising microclimatic
conditions and local effects [28]. More precisely, engineering physics-based methods can be
categorized into steady state building energy assessment tools, dynamic building energy
simulation tools and other building energy assessment tools.

Steady state building energy assessment tools are primarily used in buildings’ energy
certification procedures. These tools are usually based on a physical approach, modified by
simplifications and assumptions that allow the user to limit the amount of input data and
the calculation time.

Dynamic building energy simulation tools mainly aim to perform a detailed calcu-
lation of a building’s thermodynamic behavior, also simulating HVAC systems. These
tools are potentially highly reliable, but they require plenty of time and accuracy in the
assessment of input data. Aside from that, they also require long simulation sessions
and computer processors that perform well. This category of energy assessment tools
belongs to building energy modeling (BEM) techniques, which are fundamental in the
field of building energy design and assessment. Thanks to BEM, any building–system
configuration may be verified during feasibility analyses or design validations. Moreover,
BEM allows energy experts to perform detailed energy audits and helps to derive design
guidelines as well as create operation strategies. BEM’s first implementation took place in
the early 1970s. After that, some specific BEM tools have grown up and been consolidated
while others fell out of use. Other BEM tools were also developed later, based on the
extensive experience gained within their predecessors. Some examples of this last category
can include software such as EnergyPlus [29] or TRNSYS [30].
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Finally, the other building energy assessment tools usually rely on very simplified
physical approaches with a low degree of adaptability to the specific design case. These
simplified tools are therefore aimed particularly at the assessment of the building energy
demand, the very first design stages or when dealing with a basic sizing of HVAC systems.

3. Research Scope in Relation to the Literature

The use of BEM software, specifically of a dynamic building energy simulation tool, is
extremely helpful in ZEB projects, because the design of ZEBs may be highly complex due
to the specific target characteristics of these buildings. For example, a ZEB must take the
maximum possible advantage of internal heat gains, but, at the same time, it should also
limit the occurrence of indoor overheating. Indoor overheating is very frequent [31–34],
and it takes place during more than half of the occupation period. Overheating is a
phenomenon highly dependent on the dynamic behavior of the building envelope, and
physically-based dynamic building simulation tools such as EnergyPlus [29] ensure very
high calculation accuracy, as was reported by Athienitis et al. [35], Østergård et al. [36],
Nord et al. [37], Augenbroe [38], Attia [39], Attia et al. [40] and Kalema et al. [41].

3.1. The Gap

As a matter of fact, physically based dynamic BEM software is grounded in detailed
physical dynamic energy modeling, which allows the user to grasp the effects of even the
slightest variation in the boundary conditions, such as variations in internal gains due
to scheduling, solar shadings, system regulations and window constructions. Therefore,
physically based dynamic BEM tools may represent the most appropriate tools to support
ZEB projects. However, when the user is neither interested in a very detailed building–
system input definition nor in getting hourly or even sub-hourly results, physically based
dynamic BEM software still seems to represent the only available option to forecast the
energy consumption of a building with good reliability. In fact, BEMs are also used in the
case of feasibility studies or during the first design phases of a project. Yet, when a BEM
is used in comparative analyses, during the early design stages, calculations may take an
excessively long time due to the high number of energy simulations and the large number
of available proper freedom degrees of the early design stages. As a result, designers
could be discouraged from the extensive use of these tools when conducting optimization
analyses, and they may prefer to study and compare a very limited amount of acknowledged
alternative designs. However, this last approach obviously will not lead to the optimal
solution among the feasible domains.

On this basis, the research question can be stated as follows: How can we obtain
immediate and accurate energy consumption forecasts without directly using accurate BEM software
to support quick comparative analyses in the early design stages of building energy projects?

3.2. The Objective of the Research

In this context, the objective of this study can be defined as finding a way to reshape
the approach to fast energy simulations during the early stages of a project in order to
enable iterative calculation tools, supporting decision-making processes and optimizing
analyses. The basic idea behind our research consists of the development of an easy-to-use
forecasting tool based on ANNs to automatically assess the energy demand of a building
with no direct use of any BEM software.

Our study has been carried out through the following steps:

• Running a very large amount of energy simulations of archetype buildings by varying
a chosen set of their characteristics;

• Collecting all the energy simulation results into a single database;
• Using machine learning techniques to synthesize the database developed into the

forecasting tools by means of ANNs.

The aim of the ANNs developed in this research is to assess the energy demand
for a building while keeping high calculation accuracy but significantly decreasing the
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simulation time. The ANNs may be considered a perfect option, since they can accurately
approximate multivariate nonlinear functions, as is performed in this case. Aside from that,
ANNs can be easily transferred via well-acknowledged file formats such as h5, which is
used in the developed tool, and ONNX [42] so that no specific expertise is required for their
use. Moreover, they are highly robust and very reliable statistical black box methodologies
if they are trained by a sufficient amount of data.

The ANNs developed for this research are able to forecast the buildings energy
requirements. Each ANN is dedicated to assessing one single component of the yearly
energy balance, such as the yearly heating energy demand, the yearly cooling energy
demand and the yearly electricity consumption. In order to focus on one single illustrative
example, this paper describes the development of one ANN able to generate an accurate
estimate of the building’s yearly heating energy demand based on the variation of a large
number of parameters that may be known or estimated during the course of feasibility
studies. In this regard, Section 4 describes the methodology adopted here, including
the tools, calculation procedures and boundary conditions, whereas Section 5 shows the
achieved results. Finally, Sections 6 and 7 draw the main conclusions of this work and
prospect possible future developments.

4. Methodological Approach

A set of archetype buildings was developed in EnergyPlus in idf format in order to
create the significant database that will be used to train the ANNs. The characteristics
and parameters of the archetype buildings were defined as a range of possible values.
Correspondingly, via a purposely developed Python script, an idf file was automatically
developed for each simulation, and the default values of the buildings’ parameters were
iteratively substituted with other values randomly chosen within the given ranges. Thus, a
large number of energy simulations was run for each archetype building, creating different
combinations of the building characteristics.

As will be clear in Section 4.1, a plethora of building parameters were analyzed in
this research so as to allow the resulting software to leave room for a high degree of
flexibility when applied in feasibility studies. Because of the large number of variables,
a proportionally large database of EnergyPlus simulations had to be developed, as is
illustrated in Section 4.2. The resulting database was filtered, and the data were validated
so that the final database was ready to train the machine learning algorithms, as is further
described in Section 4.3. The ANNs were trained, trying different architectures in order to
improve as much as possible the reliability of their predictions (Section 4.4).

4.1. ANN Target Characteristics

The developed ANNs should be able to interact with building design tools such
as BIM platforms in order to increase the speed and accuracy when assessing buildings’
seasonal energy needs. Via the ANNs developed in this research, BIM platforms should be
able to fulfill the following functions:

• Instantaneously recalculate the main seasonal energy needs when the user modifies
the input parameters, such as overall sizes, window ratios and building constructions,
via sliders in a graphical user interface (GUI);

• Adapt to various building occupation levels.

4.2. The Database to Train the Networks

The database developed referenced the city of Venice because it shares the same
weather conditions with the densely populated area of Northern Italy named Po Valley.

All the buildings’ input parameters prone to variation in every iterative simulation
are depicted in Table 1. Here, three main categories of input parameters were considered:
geometry and layout, constructions and occupancy-related data.

The simulations to be included in the simulation database were filtered based on
the output results in order to generate realistic simulations. For instance, simulations
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showing values that were too high or too low for heating and cooling energy needs were
excluded from the database, considering that the result could come from the combination
of very advantageous or disadvantageous boundary conditions or building geometries
and constructions. The following values were set as limits in terms of the minimum or
maximum values:

- Heating energy needs: 7/250 kWh/m2;
- Cooling energy needs: 3/90 kWh/m2;
- Domestic hot water preparation energy needs: 3/40 kWh/m2;
- Lighting energy needs: 1/15 kWh/m2;
- Other electrical appliances energy needs: 7/50 kWh/m2.

The building as a whole was modeled as a single zone. The average story gross height
was considered to be 3 m. The building construction layers are represented in Table 2, while
the glazing characteristics are shown in Table 3. The simulations also referred to indoor
temperatures able to ensure average comfort conditions as specified in Table 4, whereas
the schedule and internal heat gains are resumed in Table 5.

Each iterative simulation included the parameters summarized in Table 1, with values
randomly assessed via uniform sampling within predefined limits or among a set of choices
given in the same table.

An overall number of 600,000 simulations was run. This amount was defined based
on the desired target accuracy shown by the developed ANNs. In fact, the accuracy of the
ANNs depends, of course, on their architecture (e.g., the kind of network, the number of
layers, the number of nodes and the chosen activation functions) as well as on the number
of training records, which should be large enough to catch the related variation in the
outputs, especially in the case of many degrees of freedom. Each simulation took about 5 s
on a PC with an Intel Core i9 7960X microprocessor with 32GB DDR4 RAM at 2666 MHz
and an SDD hard disk.

By reserving 28 threads to the simulation runs and considering the time needed to
extract data from the SQLite output file, about 35 h was required to build the overall
simulation database.

Table 1. Range of values considered in the input parameters.

Code Description Unit Range of Values Notes

Geometry
and Layout

X Length of side 1 of the floor m Minimum value: 7
Maximum value: 30

Y Length of side 2 of the floor m Minimum value: 7
Maximum value: 30

nStoreys Number of stories - Minimum value: 1
Maximum value: 8

α Building’s azimuth - Minimum value: 0
Maximum value: 90

FW,A,N
Window area fraction along north

side
(@ Building azimuth = 0◦)

- Minimum value: 0.01
Maximum value: 0.90

FW,A,E Window area fraction along east side
(@ Building azimuth = 0◦) - Minimum value: 0.01

Maximum value: 0.90

FW,A,S
Window area fraction along south

side
(@ Building azimuth = 0◦)

- Minimum value: 0.01
Maximum value: 0.90

FW,A,W Window area fraction along west side
(@ Building azimuth = 0◦) - Minimum value: 0.01

Maximum value: 0.90
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Table 1. Cont.

Code Description Unit Range of Values Notes

Constructions

EWTh2 External wall construction: thickness
of the insulation layer m Minimum value: 0.00

Maximum value: 0.20

For further
details, please

see Table 2.

EWTh3 External wall construction: thickness
of the masonry or concrete layer m Minimum value: 0.20

Maximum value: 0.40

EWTC3
External wall construction: thermal

conductivity of the masonry or
concrete layer

W/(m·K) Minimum value: 0.60
Maximum value: 1.80

RTh2 Roof construction: thickness of the
insulation layer m Minimum value: 0.00

Maximum value: 0.20

FTh2 Floor construction: thickness of the
insulation layer m Minimum value: 0.00

Maximum value: 0.20

G Glazing type String G1, G2, G2Le, G3Le
For further

details, please
see Table 3.

AII Average infiltration flow rate
intensity ach Minimum value: 0.01

Maximum value: 1.00

Occupancy-
Related

Data

PD People density np/m2 Minimum value: 0.02
Maximum value: 0.08

For further
details, please

see Table 5.

LD Density of electric consumption due
to lights W/m2 Minimum value: 0

Maximum value: 6

ED Density of electric consumption due
to electric equipment W/m2 Minimum value: 0

Maximum value: 20

DHWI Domestic hot water intensity W/p Minimum value: 0
Maximum value: 200

AVI Average ventilation flow rate
intensity m3/(s·p)

Minimum value: 0.001
Maximum value: 0.010 -

Table 2. Opaque constructions.

Construction Layer
(-)

Thickness
(m)

Thermal
Conductivity

(W/(m·K))

Density
(kg/m3)

Specific Heat
(J/(kg·K))

Thermal
Resistance
(m2·K/W)

Total
Thermal

Conductance
(W/(m2·K))

External wall

01 (Ext) 0.015 0.55 1500 900 0.027

0.15–6.04
02 0.000–0.200 0.034 45 900 0.000–5.882
03 0.200–0.400 0.600–1.800 1500 900 0.111–0.667

04 (Int) 0.015 0.55 1500 900 0.027

Roof

01 (Ext) 0.02 0.4 700 2500 0.050

0.15–1.28
02 0.000–0.200 0.034 45 900 0.000–5.882
03 - - - - 0.16
04 0.3 0.55 1500 900 0.545

05 (Int) 0.015 0.55 1500 900 0.027

Floor

01 (Ext) 0.3 1.6 1800 900 0.188

0.16–3.83
02 0.000–0.200 0.034 100 900 0.000–5.882
03 0.1 1.6 1800 900 0.063

04 (Int) 0.02 1.8 1800 900 0.011

Table 3. Window constructions.

Code
(Alpha)

Description
(Alpha)

U-Value
(W/(m2·K))

Visible
Transmittance

(-)

Solar Heat Gain
Coefficient

(-)

Glazing
types

G1 Single glazing 5.70 0.86 0.90
G2 Double glazing 2.70 0.76 0.81

G2Le Double glazing, argon-filled, low emissivity film for solar gain 1.10 0.63 0.72
G3Le Triple glazing, argon-filled, low emissivity film for solar gain 0.70 0.35 0.58
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Table 4. Indoor environment control temperatures.

Scope
Weekdays All Other Days

Time Period Control Temperature
(◦C) Time Period Control Temperature

(◦C)

Heating 00:00–08:00 16.0 00:00–08:00 16.0
08:00–24:00 20.0 08:00–24:00 20.0

Cooling 00:00–08:00 30.0 00:00–08:00 30.0
08:00–24:00 28.0 08:00–24:00 28.0

Table 5. Scheduling of internal heat gains.

Category
Weekdays All Other Days

Time Percentage Time Percentage

People
00:00–08:00 100% 00:00–14:00 100%
08:00–18:00 33% 14:00–22:00 33%
18:00–24:00 100% 22:00–24:00 100%

Lights
00:00–08:00 0% 00:00–14:00 0%
08:00–18:00 0% 14:00–18:00 100%
18:00–24:00 100% 18:00–24:00 100%

Electric equipment
00:00–08:00 20% 00:00–14:00 20%
08:00–18:00 30% 14:00–22:00 100%
18:00–24:00 100% 22:00–24:00 100%

Domestic hot water
00:00–08:00 0% 00:00–14:00 0%
08:00–18:00 20% 14:00–22:00 20%
18:00–24:00 100% 22:00–24:00 100%

The following outputs were produced by the simulations in order to calculate the
yearly energy demand and the internal heat gains, as well as to briefly describe comfort
and indoor air quality (IAQ) levels and design capacities:

• Heating energy demand (kWh/y);
• Cooling energy demand (kWh/y);
• Lighting energy demand (kWh/y);
• Electrical equipment energy demand (kWh/y);
• Domestic hot water (DHW) energy demand (kWh/y);
• Total solar energy transmitted by the windows’ facing, with no regard to the building’s

azimuth angle (kWh/(m2·y)):

- North;
- East;
- South;
- West;

• Yearly average value of illuminance in the center of the zone during occupancy
hours (lux);

• Yearly average value of CO2 concentration in the zone during occupancy hours (ppm);
• Average zone air temperature in the period of December–January (i.e., in midwinter)

during occupancy hours (◦C);
• Average zone air relative humidity in the period of December–January during occu-

pancy hours (%);
• Average zone air temperature in the period of June–July (i.e., in midsummer) during

occupancy hours (◦C);
• Average zone air relative humidity in the period of June–July during occupancy

hours (%);
• Calculated design heating capacity (kW);
• Calculated design cooling capacity (kW).
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4.3. Producing the Training Database

The database consisting of the EnergyPlus simulations was processed to transform
the energy output data into more significant performance indexes. As such, the energy
outputs were divided by the total floor area in order to get the energy intensity values.
Energy intensity is, in fact, weakly influenced by other parameters, like the number of
floors and, to a certain extent, the building’s plan area. As a result, for instance, the yearly
heating energy demand (kWh/y) becomes the yearly heating energy demand intensity
(kWh/(m2

Floor·y)).
The database has also been analyzed in order to verify the reliability of the data

produced by means of limit verification on the outputs. The input parameters could vary
over the given ranges, and all the possible inputs represented a feasible solution. Still,
some combination of the parameters might result in relatively uncommon outputs, such
as yearly heating loads that are too low. Therefore, the simulations showing such low
energy consumption were removed from the database because they represented unlikely
combinations of high energy efficiency building envelopes with very high total internal
heat gains.

Afterward, additional columns were added to make the discrete input parameters
more readable (e.g., in this case, the glazing type). Thus, the glazing types column
generated four more columns, named “Window_Type_G1”, “Window_Type_G2”, “Win-
dow_Type_G2Le” and “Window_Type_G3Le”, which received a value of 1 if “G1”, “G2”,
“G2Le” or “G3Le” were respectively selected as the glazing type for that simulation; other-
wise, the value was null (value 0). This encoding is called “one hot”.

Afterward, the basic statistics for each output parameter were calculated, and the
consequent frequency diagrams were drawn. The dataset was then shuffled. Finally, the
dataset was divided into a “training set” and a “testing set”. Specifically, the resulting
training dataset included 75% of the records, corresponding to 450,000 records that were
randomly selected, while the testing dataset included the remaining 25% of the records,
corresponding to 150,000 records.

4.4. ANN Training and Accuracy Improvement

In order to address the research question, in this study, the authors suggested using
deep feedforward artificial neural networks (DFANNs). These are versatile nonlinear
algorithms capable of understanding highly complex relationships between a set of inputs
and a set of outputs, consequently building reliable forecasting functions. Even though
they are able to correlate multiple input variables to multiple output variables, they have
been used in this paper to correlate multiple input variables to one output at a time. This
way, a high level of accuracy could be achieved with relatively simple DFANNs, also guar-
anteeing fast computation sessions. DFANNs, trained by means of the backpropagation
(BP) algorithm, constitute the main category of ANNs in such regression analyses. In fact,
even if the dynamic thermal behavior of the building is accounted for in the frame of each
simulation, the results in each data record should be seen as a single value with no need to
resort to recurrent neural networks (RNNs), which are typically used in the forecasting of
time series.

The development of the DFANNs was conducted through the minimization of the
overall difference between the predicted output values (ANN forecasts) and the true
values (expected values). This process was performed using the mean squared error loss
function. In particular, the development of the DFANNs was an iterative process, cycling
the “training” and “testing” phases in what it is usually named an epoch in order to
minimize the result of the loss function. During the “training phase”, the training dataset
was used to refine the architecture of the network so as to decrease the value of the loss
function in comparison with the assessment developed in the previous epoch. However,
since the training process was used to change the network characteristics according to the
training dataset, the DFANNs could get too close to the training values, therefore giving
a very accurate prediction of all of the output values contained in the training dataset
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but a weak estimate if applied to other samples, such as the ones constituting the “test
dataset”. This would be verified if the value of the loss function increased when calculated
on the “testing dataset”, but it still decreased if it was calculated on the “training dataset”.
This phenomenon is named overfitting, and it shows that the considered DFANNs lacked
generalization properties.

Afterward, during the “testing phase”, the test dataset was used to calculate the loss
function after the modification to the ANN architecture happened in the training phase.

The accuracy of the DFANNs mainly depended on the number and on the distribution
of the available records for training and testing, and it also depended on the complexity of
the model (i.e., the number of nodes and layers).

Regarding the number and distribution of the available records for training and testing,
the higher the number, the better the accuracy. However, any simulation costs running
time, and wide datasets increase the time needed to train the DFANNs. Thus, to keep
the number of simulations as low as possible, this number was progressively increased
until the DFANNs showed better results for the unknown samples. The proper size of the
training and testing dataset was defined to be 600,000 samples.

Conversely, with regard to the complexity of the model, we cannot state that the higher
the complexity, the better the accuracy. In fact, too many layers and nodes may result
in excessive degrees of freedom in a DFANN and hence a decrease in its generalization
capability, therefore leading to overfitting problems.

In order to identify the best complexity of the model, DFANNs were developed in se-
ries. This means that many DFANNs were developed corresponding to various complexity
levels by means of a parametric approach. Finally, after the most suitable complexity of the
model was identified, an additional trick was used: the ensemble approach. The ensemble
approach is the calculation of the predicted value as the average of the predicted values
calculated by a set of DFANNs instead of as just the predicted value given by one single
DFANN. In fact, given the very same model complexity, a number k of DFANNs can be
achieved, giving accurate results. This may happen, for example, when their training and
testing datasets partly differ. For this purpose, the so-called k-fold cross-test was used, and
the initial dataset was split into k sub-datasets: each DFANN used k-1 sub-datasets for the
training, and one exclusive sub-dataset was used for the testing.

As a consequence, for epoch after epoch in the iterative process, the DFANNs
converged toward similar overall results but while using slightly different DFANN
architectures, since they were trained over slightly different datasets. Consequently,
some DFANNs would overestimate the output value, while others would underestimate
it. Therefore, the output value, calculated as an average of the predictions of all of the
produced DFANNs, was generally much closer to the true value than any of the single
DFANNs if taken separately.

5. Results
5.1. The Developed Software

Due to the significant work required to execute the building energy performance
simulations and to create the forecasting DFANNs, some appropriate tools and automated
procedures were developed by the authors in the Python language as described in the
following paragraphs.

A Python program was developed ad hoc to launch the large amount of energy
simulations and collect the corresponding output data. The output was a csv file collecting
the values of the input and output parameters for each EnergyPlus simulation. Each record
included in the produced database was basically mapping a point in the n-dimensional
space with ni input variables (i.e., the input parameters) and no output variables (i.e., the
simulation outputs). In this case, ni = 23 and no = 17. Each ensemble of DFANNs aimed to
calculate one specific output variable.

Other appropriate tools were developed in Python based on “Pandas” to quickly
load, explore and manipulate the large datasets based on “Keras” to develop the ANNs
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and based on “Ray” to perform parallel calculation. Thus, many DFANN models were
processed at the same time. This approach was used to develop the most suitable DFANN
by parametrically considering several DFANN complexities.

5.2. An Example of the Simulation Results

The output of the simulations was processed in order to show the distribution of the
output values, filter data and exclude unlikely boundary conditions, as well as to calculate
the basic statistics as exemplified in Figure 1 for the yearly heating energy demand intensity.

Figure 1. Frequency of occurrence for values of yearly heating energy demand intensity.

5.3. Identify the Best DFANN Complexity

As an example, the DFANN developed specifically to assess the yearly heating energy
demand intensity was used as an illustrative reference. In particular, the best DFANN
complexity was identified on the basis of the following parameters:

• Number of hidden layers (Min/Max): 2/6;
• Number of nodes per layer (Min/Max): 60/280;
• Maximum number of epochs: 1000, saving the best model developed along the epochs;
• Number of DFANNs concurring with the ensemble model: 10.

The values of the loss function applied to the training and testing samples of the
DFANNs are exemplified in Table 6. Conversely, the distribution of the relative errors
(yPred-yTrue)⁄yTrue along the output bins is shown in Figure 2, with reference to the testing
samples and to the following error intervals: error ≤ 5%, 5% < error ≤ 10%, 10% < error ≤
20%, 20% < error ≤ 50% and 50% < error. Aside from that, the profile of the loss function
value along the epochs is exemplified in Figure 3 and Table 7 (4-layer model, 280 nodes per
layer), with separate references to the training and testing samples. As can be seen, the loss
function curves calculated for the training and testing samples both converged to small
values, therefore showing that no overfitting was taking place. Information about the input
and output scaling was saved in pkl files, whereas the architecture parameters of each
DFANN were saved in h5 files. Ultimately, information about the final ensemble model
is represented in Figure 4 and Table 8, where the function loss values for the training and
testing datasets along the epochs are shown as a whole for an ensemble model, consisting
of 10 models of 4 layers and 280 nodes per layer. It is clear how the accuracy is much higher
this way than in the case of a single model.
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Table 6. Examples of loss function values and training times for some DFANN architectures.

Model ID [-] Hidden Layers [-] Nodes Per Layer [-] Train Loss [-] Test Loss [-] Best Epoch [-] Training Time [s]

1 2 140 2.81 × 10−5 2.85 × 10−5 992 25,285
2 2 280 2.25 × 10−5 2.35 × 10−5 997 29,470
3 3 140 2.01 × 10−5 2.03 × 10−5 992 28,062
4 3 280 1.66 × 10−5 1.82 × 10−5 995 34,723
5 4 140 1.83 × 10−5 1.89 × 10−5 997 30,525
6 4 280 1.40 × 10−5 1.54 × 10−5 999 39,641
7 5 140 1.67 × 10−5 1.73 × 10−5 995 33,096
8 5 280 1.31 × 10−5 1.51 × 10−5 984 43,685
9 6 140 1.55 × 10−5 1.63 × 10−5 993 34,988
10 6 280 1.23 × 10−5 1.50 × 10−5 996 50,064
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Table 7. Function loss values for the training and test datasets for a 4-layer model with 280 nodes
per layer.

Relative Error (%) Share of Training Samples (%) Share of Test Samples (%)

0–5 94.2747 93.7016
5–10 4.9558 5.4067
10–20 0.7379 0.8515
20–50 0.0315 0.0396
50+ 0.0000 0.0007 

1 

 1 
Figure 4. Distribution of occurrence for prediction errors for an ensemble model based on 4-layer models with 280 nodes per layer. 2 

 3 

Figure 4. Distribution of occurrence for prediction errors for an ensemble model based on 4-layer models with 280 nodes
per layer.

Table 8. Function loss values for the training and test datasets for an ensemble model based on
4-layer models with 280 nodes per layer.

Relative Error (%) Share of Training Samples (%) Share of Test Samples (%)

0–5 98.4793 92.9048
5–10 1.3417 5.9539
10–20 0.1585 1.0656
20–50 0.0205 0.0757
50+ 0.0000 0.0000

6. Discussion and Further Improvements

The accuracy of DFANNs could be further improved by means of different algorithms,
such as the Box Cox [43] or Yeo-Johnson [44] transformations. Since these algorithms
require a normal distribution of values in order to be applied successfully, a logarithmic
transformation of our values was applied so that any value distribution became quasi-
normal, as is shown in Figure 5. This allowed us to take advantage of the Box Cox and
Yeo-Johnson algorithms mentioned above, thus achieving even better results in a new
ensemble model, which is represented in Figure 6 and Table 9. In particular, it is clear how
the accuracy improved in the range of small output values, where the previous model
gave higher relative errors. Obviously, the use of the logarithmic transformation involved
the reverse transformation of the values coming out from the ensemble model to get the
predictions back in the original scale.
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Figure 5. Frequency of occurrence for values of yearly heating energy demand intensity after transformation of the output
values into a quasi-normal distribution.
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Table 9. Function loss values on the test dataset along epochs for an ensemble model based on
4-layer models with 280 nodes per layer after transformation of the output values into a quasi-
normal distribution.

Relative Error (%) Share of Test Samples (%)

0–5 99.5009
5–10 0.3958

10–20 0.0982
20–50 0.0051
50+ 0.0000
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6.1. Calculation Time

Finally, some considerations about the time were taken to generate predictions. A test
was performed to estimate the average time taken to predict various batches of samples
by means of the ensemble of 10 DFANN models described above, as is shown in Table 10.
Clearly, the execution time was much shorter than only one simulation in EnergyPlus,
which was about 5 s, thus making it possible to use these DFANNs for the intended
application. The calculation time did not take into account the loading of scaling files
and files containing models, adding up to about 3.5 s and performed just once at the
program’s launch.

Table 10. Time of execution of various batches for the ensemble of 10 models consisting of 4 layers of
280 nodes per node.

Number of Predictions in the
Batch (-) 1 10 100 1000

Time of Execution (s) 0.023 0.026 0.033 0.123

6.2. A Test on Illustrative Case Studies

Finally, the reliability of the neural networks produced was tested on a set of case
studies derived from energy assessments developed by professionals. In Table 11, the main
geometrical characteristics and assessed heating energy consumption of four illustrative
buildings are listed. The same four buildings (buildings a, b, c, d) are also depicted in
Figure 7. It was possible to verify that the neural network developed produces very reliable
results. In fact, as shown in Table 11, the errors in the forecasts are very low: 3.6%, −6.87%,
4.35% and 1.69%.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 19 
 

which was about 5 s, thus making it possible to use these DFANNs for the intended applica-
tion. The calculation time did not take into account the loading of scaling files and files con-
taining models, adding up to about 3.5 s and performed just once at the program’s launch. 

Table 10. Time of execution of various batches for the ensemble of 10 models consisting of 4 layers 
of 280 nodes per node. 

Number of Predictions in the 
Batch (-) 

1 10 100 1000 

Time of Execution (s) 0.023 0.026 0.033 0.123 

6.2. A Test on Illustrative Case Studies 
Finally, the reliability of the neural networks produced was tested on a set of case 

studies derived from energy assessments developed by professionals. In Table 11, the 
main geometrical characteristics and assessed heating energy consumption of four illus-
trative buildings are listed. The same four buildings (buildings a, b, c, d) are also depicted 
in Figure 7. It was possible to verify that the neural network developed produces very 
reliable results. In fact, as shown in Table 11, the errors in the forecasts are very low: 3.6%, 
−6.87%, 4.35% and 1.69%. 

(a)

 
 

(b)

(c) 

  

(d)

Figure 7. Examples of buildings assessed via building energy simulation and ANNs, with (a), (b), 
(c) and (d) respectively referring to building codes in Table 11. 

  

Figure 7. Examples of buildings assessed via building energy simulation and ANNs, with (a), (b), (c) and (d) respectively
referring to building codes in Table 11.



Appl. Sci. 2021, 11, 5377 17 of 19

Table 11. Main geometrical characteristics and assessed heating energy consumption of four illustrative buildings.

Code Zone Floor
Area

North Façade East Façade South Façade West Façade Heating Energy
Consumption

(by ANN)

Heating Energy
Consumption
(Simulated)

Error
Total Windows Total Windows Total Windows Total Windows

m2 m2 m2 m2 m2 m2 m2 m2 m2 kWh/m2-y kWh/m2-y %

Building a Padua 144 69 25 40 0 69 14 40 0 14.4 13.90 3.60%
Building b Padua 110 51 0 35 5 51 0 35 4 12.2 13.1 −6.87%
Building c Vicenza 127 30 7 40 8 25 0 43 4 16.8 16.1 4.35%
Building d Ravenna 84 22 2 41 6 22 7 41 0 18.1 17.8 1.69%

7. Conclusions

This paper deals with the generation of a set of artificial neural networks as a means
to automatically assess the building energy demand from the very early design stages of
a project, even in the case of interactive input/output frameworks, without the need of
using any dynamic energy simulation software.

The work started from the construction of a very large database of 600,000 instances,
which resulted from dynamic building energy simulations in EnergyPlus. This database
was employed to train and test the set of deep feedforward artificial neural networks
within an iterative process, aimed at increasing the overall accuracy of the networks. For
this purpose, some additional robust techniques were also employed, such as the power
transformation and ensemble approaches.

Despite the large number of input parameters, as well as their wide value ranges,
the combination of these algorithms and techniques made it possible to achieve very
high accuracy during the testing procedures, with errors below 5% for over 99.5% of the
testing dataset, thus confirming the very high reliability and generalization capabilities of
the networks.

The developed set of ANNs is therefore proposed as a reliable substitute for dynamic
building energy simulation software in the design of ZEBs during the early design stages.
Further steps of this work will focus on the development of similar DFANNs for building
zones to allow the designer to extend the flexibility in designing complex buildings.
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Nomenclature

ANN Artificial neural network
API Application programming interface
BEM Building energy modeling
BP Backpropagation
DFANN Deep feedforward artificial neural network
GUI Graphical user interface
HVAC Heating, ventilation and air-conditioning
IAQ Indoor air quality
Idf (EnergyPlus) input data file
PV Photovoltaics
RNN Recurrent neural network
ZEB Zero-energy building
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