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Abstract. We introduce a new formulation for differential equation describing

dynamics of measures on an Euclidean space, that we call Measure Differential

Equations with sources. They mix two different phenomena: on one side, a
transport-type term, in which a vector field is replaced by a Probability Vector

Field, that is a probability distribution on the tangent bundle; on the other

side, a source term. Such new formulation allows to write in a unified way
both classical transport and diffusion with finite speed, together with creation

of mass.

The main result of this article shows that, by introducing a suitable
Wasserstein-like functional, one can ensure existence of solutions to Measure

Differential Equations with sources under Lipschitz conditions. We also prove

a uniqueness result under the following additional hypothesis: the measure
dynamics needs to be compatible with dynamics of measures that are sums of

Dirac masses.

1. Introduction. The problem of optimal transportation, also called Monge-Kan-
torovich problem, has been intensively studied in the mathematical community.
Related to such problem, the definition of the Wasserstein distance in the space
of probability measure has revealed itself to be a powerful tool, in particular for
dealing with dynamics of measures (like the transport PDE, see e.g. [3]). For a
complete introduction to Wasserstein distances, see [26,27].

This approach has at least two main limits. The first is that the use of transport
equation, together with their classical counterpart in terms of ordinary differential
equations [1, 2], does not allow to model neither mass diffusion nor concentration
phenomena. The second one is that the Wasserstein distance Wp(µ, ν) is defined
only if the two measures µ, ν have the same mass, then PDEs with sources cannot
be studied with such tools.

Both limits were recently overcome by a variety of contributions. The first was
addressed in [22], in which a generalization of the concept of vector fields was
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introduced. Such tool, called Probability Vector Field (PVF in the following), allows
to model concentration and diffusion phenomena in the formalism of the transport
equation, then being able to translate several useful techniques from dynamical
system.

The second limit was addressed by a series of papers introducing generalizations
of the Wasserstein distance to measures with different masses. In [23] we defined
a generalized Wasserstein distance W g(µ, ν), combining the standard Wasserstein
and L1 distances. In rough words, for W g(µ, ν) an infinitesimal mass δµ of µ (or ν)
can either be removed at cost a|δµ|, or moved from µ to ν at cost bWp(δµ, δν). This
distance is a generalization of the so-called flat distance, also called (dual) bounded
Lipschitz, Fortet-Mourier or Dudley distance, see [12, 13, 17, 21]. Other generaliza-
tions of the Wasserstein distance, with the same spirit of allowing sources of mass,
are studied in [8, 18–20]. As a consequence, sources of mass can be introduced in
the transport equation, even when they depend on the measure itself: see several
examples in [5–7,13–16,24,25].

The goal of this article is to define a new class of equations, which are able
to describe complex dynamics in the space of measures, including mass diffusion,
concentration and sources. The idea is to merge two different dynamics, already
individually described in [22,23], and couple them.

The first contribution is given by dynamics induced by Probability Vector Fields
(PVF in the following), recently introduced in [22]. There, the equation

µ̇ = V [µ] (1)

is considered, where V : P(Rn) → P(TRn) is a function from the space P(Rn) of
probability measures to the space P(TRn) of probability measures of the tangent
space TRn. The idea of such function is to describe the infinitesimal spreading of
the mass µ(x) in a point x along the velocities described by the measure V [µ](x, ·)
on the fiber TxRn. Given the projection π : TRn → Rn defined by π(x, v) =
x, we also require π#V [µ] = µ, i.e. that the projection of V [µ] from P(TRn)
to P(Rn) coincides with µ. This is the measure counterpart of the fact that a
vector field is a section of the tangent bundle. The main contribution of [22] is
to introduce conditions ensuring existence and/or uniqueness of the solution of the
Cauchy problem with dynamics (1). In particular, two key tools are defined: the first
is a new non-negative operator W, based on the Wasserstein distance and enjoying
some of its properties, on the space P(TRn). The idea is that W measures the
cost of the minimizing transference plan on fibers, among plans whose projections
are optimal on the base space. The rigorous definition is given in Definition 17. If
one assumes that V from P(Rn) endowed with the Wasserstein distance to P(TRn)
endowed with W is Lipschitz, then there exists at least one solution to (1). The
second tool is the definition of Dirac germs, that are specific choices of solutions to
(1) for measures composed of Dirac deltas only. Fixed a Dirac germ for (1), then for
each initial measure there exists at most one solution to (1) that is compatible with
such chosen germ. In some specific but relevant cases, the coupling of Lipschitz
continuity of V with the choice of a compatible Dirac germ ensures both existence
and uniqueness of a solution to (1).

The definition of PVF is part of a renewed interest of the community in solutions
of ODEs and linear transport PDEs with vector fields less regular than the classical
Lipschitz condition. After the seminal Di Perna-Lions contribution [11], recent
contributions [1, 2, 9, 10] gave a meaning to the concept of solution of ẋ = v(x)
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under weak conditions on v, e.g. if it has bounded variation. In particular, they
show its equivalence to well-posedness of the linear transport PDE

∂tµ+∇ · (vµ) = 0 (2)

in the space of densities in L1∩L∞. The flows satisfying this existence and unique-
ness property are called Regular Lagrangian Flows. It has been proved in [1] that
such approach does not encompass Dirac measures. Thus, no mean-field limit can
be defined in this setting, contrarily to the intrinsic Dirac approach of PVF.

A second approach was given by Ambrosio-Gigli-Savaré in [3]: there, the authors
define a tangent space (i.e. tangent vectors) in the space of measures, by the
classical idea of defining a class of equivalence of curves that coincide up to the first
order derivative. In this case, nevertheless, there is no “explicit” description of the
velocity field: each given curve satisfies the transport equation (2) for some vector
field v, but such vector field cannot be written explicitly.

The second contribution is given by sources and sinks. In this case, the dynamics
reads as

µ̇ = s, (3)

where s is a measure on the space Rn, representing a source/sink of mass. The
description of such Partial Differential Equation with a fixed source s is very clas-
sical, since the solution is clearly µt = µ0 + ts. Instead, we introduced in [23] new
conditions to ensure that the dynamics (3) is well posed even when the source s[µ]
depends on the whole measure µ itself. The key tool is the introduction of a new
distance on the space of measures with finite mass, called the generalized Wasser-
stein distance W g. If s is Lipschitz with respect to this distance, then one has
existence and uniqueness of the solution to the Cauchy problem with dynamics (3).

For simplicity, from now on we restrict ourselves to the space M(Rn) of Borel
measures with bounded support and finite mass. In this space, the generalized
Wasserstein distance W g(µ, ν) is always finite, while the standard Wasserstein
distance W (µ, ν) is defined only if the masses of the two measures coincide, i.e.
µ(Rn) = ν(Rn). We endow the space M(Rn) with the topology of weak con-
vergence; this coincides with the topology induced by the generalized Wasserstein
distance, see Proposition 11 below.

We are now ready to define Measure Differential Equations with Source:

µ̇ = V [µ]⊕ s[µ], (4)

where V [µ] is a PVF V : M(Rn) → M(TRn) and s[µ] is a source s : M(Rn) →
M(Rn). The goal is to prove existence and/or uniqueness of a solution to the
associated Cauchy problem, under the joint hypotheses ensuring existence and/or
uniqueness for each of the dynamics (1) and (3). More precisely, we first give the
definition of a solution to (4):

Definition 1 (Solution to (4)). A solution to (4) is a continuous curve µ : [0, T ]→
M(Rn) satisfying the following condition: for each f ∈ C∞c (Rn)

• the integral
∫
TRn(∇f(x) · v) dV [µ(τ)](x, v) is defined for almost every τ ∈

[0, T ];
• the map τ →

∫
Rn f(x)ds[µ(τ)](x) belongs to L1([0, T ]);

• the map t→
∫
Rn f dµ(t) is absolutely continuous, and it satisfies

d

dt

∫
Rn
f dµ(t) =

∫
TRn

(∇f(x) · v) dV [µ(t)](x, v) +

∫
Rn
f(x)ds[µ(t)](x) (5)
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for almost every t ∈ [0, T ].

Such definition is pretty weak and can not allow uniqueness results, thus we are
also interested in stronger properties for solutions to (4). In particular, we focus on
existence of semigroups of solutions, whose definition in this setting is given below.

Definition 2. A Lipschitz semigroup St of solutions to (4) is a map S : [0, T ] ×
M(Rn)→M(Rn) satisfying:

1. S0µ = µ and St+sµ = StSsµ;
2. the map t→ Stµ is a solution to (4);
3. for every R,M > 0 there exists C = C(R,M) > 0 such that if supp(µ) ∪

supp(ν) ⊂ B(0, R) and µ(Rn) + ν(Rn) ≤M , it then holds
(a) supp(Stµ) ⊂ B(0, eCt(R+M + 1));
(b) W g(Stµ, Stν) ≤ eCtW g(µ, ν);
(c) W g(Stµ, Ssµ) ≤ C|t− s|.

We also need to define a natural tool, merging properties of the operator W on
P(TRn) with the setting of the generalized Wasserstein distance W g on M(Rn).
Such non-negative operator, that we denote byWg, measures the minimal standard
Wasserstein distance on the fiber between transference plans whose projections give
a minimizing decomposition for the generalized Wasserstein distance on the base
space. The operator is precisely defined in Section 2.5.

We are now ready to state the two main results of this article. The first deals
with existence of a solution to (4), while the second focuses on uniqueness.

Theorem 3. Consider the Measure Differential Equation with Source (4) with the
following two sets of hypotheses:

(V): The Probability Vector Field V :M(Rn)→M(TRn) satisfies:
(V1): support sublinearity: there exists C > 0 such that for all µ ∈ M(Rn)

it holds

sup
(x,v)∈supp(V [µ])

|v| ≤ C(1 + sup
x∈supp(µ)

|x|);

(V2): Lipschitz continuity: for each R > 0 there exists K = K(R) > 0 such
that supp(µ) ∪ supp(ν) ⊂ B(0, R) implies

Wg(V [µ], V [ν]) ≤ KW g(µ, ν); (6)

(s): The source s :M(Rn)→M(Rn) satisfies:
(s1): Lipschitz continuity: there exists L such that for all µ, ν ∈ M(Rn) it

holds

W g(s[µ], s[ν]) ≤ LW g(µ, ν); (7)

(s2): uniform boundedness of the support: there exists R such that for all
µ ∈M(Rn) it holds supp(s[µ]) ⊂ BR(0).

Then, there exists a Lipschitz semigroup of solutions to (4) in the sense of Definition
2.

Theorem 4. Consider the Measure Differential Equation with Source (4) satisfy-
ing Hypotheses (V1), (s) recalled in Theorem 3. Choose a Dirac germ γ, as in
Definition 22 below. Then, there exists at most one Lipschitz semigroup compatible
with γ, in the sense of Definition 29 below.
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Several corollaries about existence and/or uniqueness of the solutions to (4) can
be directly derived from corresponding results about PVFs from [22]. In particular,
one can observe that the uniqueness property depends on the PVF V only, and not
on the source s. We then have the two following remarkable cases:

• Let V [µ] = µ ⊗ δv(x) with v locally Lipschitz vector field with sub-linear
growth. Then, (4) admits a unique Lipschitz semigroup, obtained as the limit
of the discretization described in Section 3.1.

• Fix φ : [0,+∞) → R an increasing function. In the space R, define Vφ[µ] =
µ⊗ Jφ(x), where

Jφ(x) =

δφ(Fµ(x)) if Fµ(x−) = Fµ(x),
φ#

(
χ[Fµ(x−),Fµ(x)]λ

)
Fµ(x)−Fµ(x−) otherwise,

Fµ(x) = µ((−∞, x]) is the cumulative distribution of µ, and λ is the Lebesgue
measure. This choice of the PVF allows to have solutions that diffuse with
finite velocities, see [22, Section 7.1] for more details. In this case, for any
choice of the source s satisfying (s), one has existence of a solution to (4).
Even though this solution is not unique, in general, there exists a unique
semigroup obtained by the limit of the discretization algorithm described in
Section 3.1.

Remark 5. Observe that hypotheses in Theorem 3 are not sharp, in general. For
example, in (V2), the Lipschitz constant K in (6) can depend on |µ|, with the only
requirement of having supm∈[0,M ]K(m) < +∞ for all finite M .

Similarly, condition (s2) can be replaced by any condition ensuring uniform
boundedness of the supports, such as the existence of a radius R such that supp(µ) ⊆
B(0, R′) with R′ > R implies supp(s[µ]) ⊆ B(0, R′).

The structure of the article is the following. In Section 2 we fix the notation and
recall main properties of the tools used later: the Wasserstein distance, the gen-
eralized Wasserstein distance and Measure Differential Equations with Probability
Vector Fields. In the main Section 3, we prove the results of this paper. In Section
3.1, we prove Theorem 3 about existence of a solution to (4), while in Section 3.2,
we prove Theorem 4 about uniqueness.

2. Dynamics in generalized Wasserstein spaces. In this section, we fix the
notation and define the main tools used in the rest of the article: the Wasserstein
distance, the generalized Wasserstein distance and Measure Differential Equations
with Probability Vector Fields.

2.1. The Wasserstein distance. We use M(Rn) to denote the space of positive
Borel regular measures with bounded support1 and finite mass on Rn. Given µ, µ1

Radon measures (i.e. positive Borel measures with locally finite mass), we write
µ1 � µ if µ1 is absolutely continuous with respect to µ, while we write µ1 ≤ µ if
µ1(A) ≤ µ(A) for every Borel set A. We denote by |µ| := µ(Rn) the norm of µ
(also called its mass). More generally, if µ = µ+ − µ− is a signed Borel measure,
we define |µ| := |µ+|+ |µ−|.

1Boundedness of the support can be easily weakened, when replacing it with conditions ensuring
completeness of the solution, e.g. when velocity fields are bounded.
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Given a Borel map γ : Rn → Rn, the push forward of a measure µ ∈ M(Rn) is
defined by:

γ#µ(A) := µ(γ−1(A)).

Note that the mass of µ is identical to the mass of γ#µ. Therefore, given two
measures µ, ν with the same mass, one may look for γ such that ν = γ#µ and it
minimizes the cost

I [γ] := |µ|−1

∫
Rn
|x− γ(x)|p dµ(x).

This means that each infinitesimal mass δµ is sent to δν and that its infinitesimal
cost is the p-th power of the distance between them. Such minimization problem
is known as the Monge problem. A generalization of the Monge problem is defined
as follows. Given a probability measure π on Rn × Rn, one can interpret π as a
method to transfer a measure µ on Rn to another measure on Rn as follows: each
infinitesimal mass on a location x is sent to a location y with a probability given
by π(x, y). Formally, µ is sent to ν if the following properties hold:

|µ|
∫
Rn
dπ(x, ·) = dµ(x), |ν|

∫
Rn
dπ(·, y) = dν(y). (8)

Such π is called a transference plan from µ to ν and we denote the set of transference
plans from µ to ν by P (µ, ν). A condition equivalent to (8) is that, for all f, g ∈
C∞c (Rn) it holds |µ|

∫
Rn×Rn(f(x)+g(y)) dπ(x, y) =

∫
Rn f(x) dµ(x)+

∫
Rn g(y) dν(y).

One can define a cost for π as follows

J [π] :=

∫
Rn×Rn

|x− y|p dπ(x, y),

and look for a minimizer of J in P (µ, ν). Such problem is called the Monge-
Kantorovich problem. It is important to observe that such problem is a gener-
alization of the Monge problem. The main advantage of this approach is that a
minimizer of J in P (µ, ν) always exists. We then denote by P opt(µ, ν) the set of
transference plans that are minimizers of J , that is always non-empty.

One can thus define onM1(Rn) the following operator between measures of the
same mass, called the Wasserstein distance:

Wp(µ, ν) = |µ|( min
π∈P (µ,ν)

J [π])1/p.

It is indeed a distance on the subspace of measures in M(Rn) with a given mass,
see [26]. It is easy to prove that Wp(kµ, kν) = Wp(µ, ν) for k ≥ 0, by observing
that P (kµ, kν) = P (µ, ν) and that J [π] does not depend on the mass.

From now on, we only consider the Wasserstein distance with parameter p = 1,
that will then be denoted by W (µ, ν). It satisfies the following fundamental dual
property.

Proposition 6. [Kantorovich-Rubinstein duality] Let µ, ν ∈M1(Rn). It then holds

W (µ, ν) = sup

{∫
Rn
fd(µ− ν) s.t. Lip(f) ≤ 1

}
. (9)

Such property plays a crucial role in the theory of PVF, see [22]. It is then
unclear if a corresponding theory can be generalized to any p > 1.
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2.2. The generalized Wasserstein distance. In this section, we provide a defi-
nition of the generalized Wasserstein distance, introduced in [23,24], together with
some useful properties. We consider here the generalized Wasserstein distance with
parameters a = b = 1, to simplify the notation, and p = 1.

Definition 7. Let µ, ν ∈M(Rn) be two measures. We define the functional

W g(µ, ν) := inf
µ̃,ν̃∈M(Rn), |µ̃|=|ν̃|

|µ− µ̃|+ |ν − ν̃|+W (µ̃, ν̃). (10)

We now provide some properties of W g. Proofs can be adapted from those given
in [23].

Proposition 8. The following properties hold:
1. The infimum in (10) coincides with

inf
µ̃≤µ,ν̃≤ν, |µ̃|=|ν̃|

|µ− µ̃|+ |ν − ν̃|+W (µ̃, ν̃),

where we have added the constraint µ̃ ≤ µ, ν̃ ≤ ν.
2. The infimum in (10) is attained by some µ̃, ν̃.
3. The functional W g is a distance on M(Rn).
4. It holds W g(µ, 0) ≤ |µ|.
5. It holds

||µ| − |ν|| ≤W g(µ, ν). (11)

6. If |µ| = |ν|, it holds

W g(µ, ν) ≤W (µ, ν). (12)

We recall now some useful topological results related to the metric spaceM(Rn)
when endowed with the generalized Wasserstein distance. We first recall the defi-
nition of tightness in this context.

Definition 9. A set of measures M is tight if for each ε > 0 there exists a compact
Kε such that µ(Rn \Kε) < ε for all µ ∈M .

We now recall the definition of weak convergence of measures, as well as an
important result about convergence with respect to the generalized Wasserstein
distance, see [23, Theorem 13].

Definition 10. Let {µn} be a sequence of measures in Rn, and µ a measure. We
say that µn converges to µ with respect to the weak topology, and we write µn ⇀ µ,
if for all functions f ∈ C∞c it holds

lim
n→∞

∫
Rn
f dµn =

∫
Rn
f dµ.

Proposition 11. Let {µn} be a sequence of measures in Rn, and µ ∈ M(Rn).
Then

W g(µn, µ)→ 0 is equivalent to µn ⇀ µ and {µn} is tight.

We also recall the result of completeness, see [23, Proposition 15].

Proposition 12. The space M(Rn) endowed with the distance W g is a complete
metric space.

The generalized Wasserstein distance also satisfies a useful dual formula, showing
that it coincides with the so-called flat distance. See [24].
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Proposition 13. Let µ, ν ∈M(Rn). It then holds

W g(µ, ν) = sup

{∫
Rn
fd(µ− ν) s.t. ‖f‖C0 ≤ 1, Lip(f) ≤ 1

}
. (13)

We recall that the L1 distance satisfies a dual formula too, that is

|µ− ν| = sup

{∫
Rn
fd(µ− ν) s.t. ‖f‖C0 ≤ 1

}
. (14)

We also have this useful estimate to bound integrals. See [23].

Lemma 14. Let f ∈ C0(Rn) ∩ Lip(Rn). It then holds∫
Rn
fd(µ− ν) ≤ max {‖f‖C0 ,Lip(f)}W g(µ, ν). (15)

We end this section by giving useful estimates both for the standard and gen-
eralized Wasserstein distances Wp and W g under flow actions. Proofs are given
in [23,24].

Proposition 15. Let vt, wt be two time-varying vector fields, uniformly Lipschitz
with respect to the space variable, and φt, ψt the flow generated by v, w respectively.
Let L be the Lipschitz constant of v and w, i.e. |vt(x) − vt(y)| ≤ L|x − y| for all
t, and similarly for w. Let µ, ν ∈ M(Rn). We have the following estimates for the
standard Wasserstein distance

• Wp (φt#µ, φt#ν) ≤ eLtWp (µ, ν),
• Wp (µ, φt#µ) ≤ t‖v‖C0 |µ|,
• Wp (φt#µ, ψt#ν) ≤ eLtWp (µ, ν) + eLt−1

L |µ| supτ∈[0,t] ‖vt − wt‖C0 .

We have the following estimates for the generalized Wasserstein distance

• W g(φt#µ, φt#ν) ≤ eLtW g(µ, ν),
• W g(µ, φt#µ) ≤ t‖v‖C0 |µ|,
• W g(φt#µ, ψt#ν) ≤ eLtW g(µ, ν) + eLt−1

L |µ| supτ∈[0,t] ‖vt − wt‖C0 .

2.3. Measure differential equations with probability vector fields. In this
section, we summarize the main results and tools about PVFs, introduced in [22].
We slightly enlarge the setting of [22], since we consider general measures with finite
mass and not only probability measures.

We first recall the definition of a solution to the Cauchy problem

µ̇ = V [µ], µ(0) = µ0. (16)

Definition 16. Fix a final time T > 0. A solution to (16) is a map µ : [0, T ] →
M(Rn) such that µ(0) = µ0 and the following holds: for each f ∈ C∞c (Rn)

• the integral
∫
TRn(∇f(x)·v) dV [µ(s)](x, v) is defined for almost every s ∈ [0, T ];

• the map s→
∫
TRn(∇f(x) · v) dV [µ(s)](x, v) belongs to L1([0, T ]);

• the map t→
∫
Rn f dµ(t) is absolutely continuous, and it satisfies

d

dt

∫
Rn
f dµ(t) =

∫
TRn

(∇f(x) · v) dV [µ(t)](x, v) (17)

for almost every t ∈ [0, T ].

We now recall the definition of the pseudo-distance W, that will be useful in the
following.
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Definition 17. Let V1, V2 ∈ M(TRn) with |V1| = |V2|. Denote by µ1 = π1#V1

and µ2 = π1#V2 the projection of the PVF on the base space. Define

W(V1, V2) := inf

{∫
TRn×TRn

|v − w| dp(x, v, y, w) such that p ∈ P (V1, V2)

and π13#p ∈ P opt(µ1, µ2)
}
.

Clearly, such functional is not a distance, see examples in [22]. Nevertheless, we
will see in the following that the local Lipschitz condition (V2) will ensure existence
of solutions to (16). Observe that it also holds

W (V1, V2) ≤ W(V1, V2) +W (π1#V1, π1#V2). (18)

See [22] for more details.
We now address the problem of existence of solutions to (16). The idea developed

in [22] is to define a semigroup of solutions as the limit of approximated ones. We
first describe precisely the discretization method, that will be also useful in the
following.

Definition 18. Fix N ∈ N and define the time step size ∆N = 1
N , the velocity step

size ∆v
N = 1

N and the space step size ∆x
N = ∆v

N∆N = 1
N2 . Define xi the (2N3 +1)n

equispaced discretization points of (Zn/(N2)) ∩ [−N,N ]n, and vj the (2N2 + 1)n

equispaced discretization points of (Zn/N) ∩ [−N,N ]n.
Define Mx

N ⊂ M(Rn) the space of measures of Rn with support on the set of
points xi, and Mv

N ⊂ M(R2n) the space of measures of R2n with support on the
set of points (xi, vj),

Define the discretization operator in the space variable AxN :M(Rn) →Mx
N as

follows
AxN (µ) :=

∑
i

mx
i (µ)δxi ,

where mx
i (µ) := µ(xi + Q) with Q =

[
0, 1

N2

)n
. Define the discretization operator

in the velocity variable AvN :M(R2n)→Mv
N as follows

AvN (V ) :=
∑
i,j

mv
ij(V )δ(xi,vj), (19)

where mv
ij(V ) := V ((xi +Q)× (vj +Q′)) with Q′ =

[
0, 1

N

)n
.

The first property of such discretization is that it introduces an arbitrarily small
error in the Wasserstein distance.

Proposition 19. Given µ ∈Mc(Rn) and V [µ] ∈Mc(TRn), for a sufficiently large
N it holds

W (µ,AxN (µ)) ≤ |µ|∆x
N , W (V [µ],AvN (V [µ]) ≤ |µ|∆v

N .

Proof. The proof with µ and V [µ] being probability measures is given in [22]. The
generalization to measures with finite mass is straightforward.

One can then define an approximated solution (called the Lattice Approximate
Solution) to (16) via an explicit Euler scheme.

Definition 20. Given the Cauchy problem (16), we define the following Lattice
Approximate Solution µN : we set µN (0) := AxN (µ0), then recursively

µN ((k + 1)∆N ) :=
∑
i,j

mv
ij(V [µN (k∆N )])δxi+∆Nvj ,
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and for intermediate times t ∈ [0,∆N ) we define

µN (k∆N + t) :=
∑
i,j

mv
ij(V [µN (k∆N )])δxi+tvj .

We are now ready to state the existence of a solution to (16) as a limit of the
Lattice Approximate Solutions introduced above.

Theorem 21. Let a PVF V :M(Rn) →M(TRn) be given, satisfying (V) where
Wg is replaced by W. Then, there exists a Lipschitz semigroup of solutions to
(16), obtained as uniform-in-time limit of Lattice Approximate Solutions for the
Wasserstein Metric.

Proof. The first key observation is that both AxN and AvN are operators preserving
the mass for N sufficiently large, i.e. AxN (µ)(Rn) = µ(Rn) and similarly for the
PVF. As a consequence, the mass of µN (t) coincides with µN (0), that in turn
coincides with µ0 for N sufficiently large.

If µ0(Rn) = 1, then the whole sequence µN (t) is in Pc(Rn), and one can apply
the proof of [22, Theorem 4.1]. Otherwise, rescale the mass by defining νN (t) =

1
µ0(RN )

µN (t), apply the previous case to define ν(t) and prove that µ(t) = µ0(RN )

ν(t) is a solution to (16).

We now recall the definition of Dirac germs, that permits to address the problem
of uniqueness of the solution to (16). We also give the definition of semigroup
compatible with the germ.

Definition 22. Let V be a PVF. Define

MD :=

{
µ ∈M(Rn) such that µ =

m∑
l=1

mlδxl

}
the space of measures composed of Dirac deltas. A Dirac germ γ compatible with
V is a map assigning to each µ ∈ MD a Lipschitz curve γµ : [0, ε(µ)] → M(Rn),
with the following conditions:

• ε(µ) > 0 is uniformly positive for measures with uniformly bounded support;
• γµ is a solution to (1).

Definition 23. Fix a PVF V satisfying (V1), a final time T > 0 and a Dirac germ
γ. A semigroup for (1) is said to be compatible with γ if one has the following
property: for each R,M > 0 there exists C(R,M) such that the space MD

R,M :={
µ ∈MD s.t. supp(µ) ∈ B(0, R), |µ| ≤M

}
satisfies

for all t ∈ [0, inf
µ∈MD

R,M

ε(µ)] one has sup
µ∈MD

R

W (Stµ, γµ(t)) ≤ C(R,M)t2. (20)

We are now ready to prove the main result about uniqueness of solutions to (16).

Theorem 24. Consider a PVF satisfying (V1) and fix a Dirac germ γ. There
exists at most one Lipschitz semigroup St of solutions to (16) compatible with γ.

Proof. First observe that uniform boundedness of the support and the weak formu-
lation (17) when choosing f = 1 on ∪t∈[0,T ]supp(µ(t)) imply that the mass µ(t)(Rn)
is constant along trajectories of (1). Thus, the Dirac germ satisfies conservation of
mass too.

Apply now the proof of Theorem 5.1 in [22] for an initial data being a probability
measure, with the Dirac germ restricted to probability measures. For initial data
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with general finite mass, apply the rescaling trick described in the proof of Theorem
21 both to the initial data and the Dirac germ.

2.4. Measure equations with sources. In this section, we briefly study the
measure equation with source

µ̇ = s[µ], µ(0) = µ0. (21)

The goal is to prove that condition (s) in Theorem 3 ensures existence and
uniqueness of a solution to (21). This is indeed a particular case of a more general
result, stated in [23], in which a transport term is added too. For our future use, we
prove the statement with the same discretization method of Lattice Approximate
Solution introduced in Definition 18.

Proposition 25. Fix T > 0. Let the source s :M(Rn)→M(Rn) satisfy Hypothe-
ses (s) in Theorem 3. Then, there exists a unique solution to (21).

Moreover, such solution is the uniform-in-time Wasserstein limit for N → ∞
of Lattice Approximate Solutions µN : [0, T ] → M(Rn) defined as follows: Define
µN (0) := AxN (µ0) =

∑
im

x
i (µ0)δxi , then recursively

µN ((k + 1)∆N ) = µN (k∆N ) + ∆NAxN (s[µN (k∆N )]). (22)

We also define the time-interpolated solution for t ∈ [0,∆N ] as follows: µN (k∆N +
t) = µN (k∆N ) + tAxN (s[µ(k∆N )]).

Proof. We first prove existence of a solution, based on the Lattice Approximate
Solution. We prove that µN is a sequence of equi-Lipschitz and equi-bounded curves
in C0([0, T ],M(X)), where X is a compact subset of Rn and the space M(X) is
endowed with the generalized Wasserstein distance W g. For τ, σ ∈ [0,∆N ] it holds

W g(µN (k∆N + τ), µN (k∆N + σ)) =

W g(τAxN (s[µN (k∆N )]), σAxN (s[µN (k∆N )])) ≤
|τ − σ|

∣∣AxN (s[µN (k∆N )])
∣∣ ≤ |τ − σ| ∣∣s[µN (k∆N )]

∣∣ . (23)

We are then left to prove that
∣∣s[µN (k∆N )]

∣∣ is uniformly bounded for k∆N ∈ [0, T ].
It is sufficient to observe that (11) and hypothesis (s1), together with (23), imply∣∣s[µN ((k + 1)∆N )]

∣∣ ≤ ∣∣s[µN (k∆N )]
∣∣+W g(s[µN (k∆N + τ)], s[µN (k∆N + σ)])

≤ (1 + L∆N )
∣∣s[µN (k∆N )]

∣∣ .
hence recursively

∣∣s[µN ((k + 1)∆N )]
∣∣ ≤ eLT ∣∣s[µN (0)]

∣∣ ≤ eLT |s[µ0]|.
We now prove that there exists R′ such that supp(µN (t)) ⊂ B(0, R′) for all N

and t ∈ [0, T ]. Eventually enlarging the radius R given in hypothesis (s2), one can
assume that supp(µ0) ⊂ B(0, R). Thus, the approximation operator AxN satisfies
supp(AxN (µ0)) ⊂ B(0, R + 1), as well as supp(AxN (s[µ])) ⊂ B(0, R + 1) for any
µ ∈ M(Rn). Since sum of measures with the same support gives a measure with
the same support, one can easily prove by induction that measures µN (k∆N + τ)
defined by the scheme (22) all have support contained in B(0, R′) with R′ = R+ 1.

Choose now X = B(0, R′), that is a compact space. Then, M(X) is complete
when endowed with the generalized Wasserstein distance W g, see Proposition 12.
The sequence µN is equi-Lipschitz in M(X), due to (23), and equi-bounded, since
masses are equi-bounded. Then, there exists a converging subsequence, converging
to some µ∗ ∈ C0([0, T ],M(X)). Recall that such convergence with respect to W g

coincides with weak convergence of measures.
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We now prove that µ∗ is a solution to (21). We first observe thatW g(µN (0), µ0) ≤
|µ0|∆x

N for N sufficiently large implies µ∗(0) = µ0. We now prove that for all
f ∈ C∞c (Rn) and τ, σ ∈ [0, T ] with σ > τ , it holds∫

Rn
f(x) d(µ∗(σ)− µ∗(τ))−

∫ σ

τ

dt

∫
TRn

f(x) ds[µ∗(t)] = 0. (24)

The definition (22) implies that, for σ, τ ∈ [0,∆N ], it holds∫
Rn
f(x) d(µN (k∆N + σ)− µ∗(k∆N + τ)) =

(σ − τ)

∫
Rn
f(x) dAxN (s[µN (k∆N )]). (25)

We then have∣∣∣∣∫
Rn
f(x) d(µ∗(σ)− µ∗(τ))−

∫ σ

τ

dt

∫
Rn
f(x) ds[µ∗(t)]

∣∣∣∣ ≤∣∣∣∣∫
Rn
f(x) d(µ∗(σ)− µN (σ))

∣∣∣∣+

∣∣∣∣∫
Rn
f(x) d(µ∗(τ)− µN (τ))

∣∣∣∣+∫ σ

τ

dt

∣∣∣∣∫
Rn
f(x) d(s[µN (ktN∆N )]− s[µ∗(t)])

∣∣∣∣+∣∣∣∣∫
Rn
f(x) d(µN (σ)− µN (τ))−

∫ σ

τ

dt

∫
Rn
f(x) ds[µN (ktN∆N )]

∣∣∣∣ , (26)

where ktN is the largest integer such that t ≥ k∆N , i.e. ktN = b t
∆N
c. The first two

terms converge to zero since µN ⇀ µ∗, while the last term is identically zero due
to (25). For the third term, observe that it holds∣∣∣∣∫

Rn
f(x) d(s[µN (ktN∆N )]− s[µ∗(t)])

∣∣∣∣ ≤
‖f‖C1L

(
W g(µN (ktN∆N ), µN (t)) +W g(µN (t), µ∗(t))

)
, (27)

where we used condition (s1) about the Lipschitz continuity of s, as well as the
dual formulation (15) for W g. The proof now follows from observing that both the
terms in the right hand side of (27) converge to zero: the first satisfies

W g(µN (ktN∆N ), µN (t)) ≤ K ′|t− ktN∆N | ≤ K ′∆N → 0,

for the constant K ′ = eLT |s[µ0]| given by (23). The second converges to zero since
W g metrizes weak convergence.

We now prove uniqueness of the solution, by proving continuous dependence on
the initial data for (21). Consider two solutions µ(t), ν(t) to (21) with initial data
µ0, ν0 respectively. Using the the weak formulation of (21), it holds∫
Rn
f(x) d(µ(t)− ν(t)) =

∫
Rn
f(x) d(µ0 − ν0) +

∫ t

0

dτf(x) d(s[µ(τ)]− s[ν(τ)]). (28)

Choose now a sequence fn with ‖fn‖C0 ≤ 1, Lip(fn) ≤ 1 realizing W g(µ(t), ν(t))
in its dual formulation (13). Then, equation (28) reads as

W g(µ(t), ν(t)) ≤W g(µ0, ν0) +

∫ t

0

LW g(µ(τ), ν(τ)),

where we used Lipschitz continuity of s. Since both µ(t), ν(t) are Lipschitz with
respect to time, a direct application of the Gronwall lemma implies W g(µ(t), ν(t)) ≤
eLtW g(µ0, ν0), that in turn implies uniqueness of the solution to (21).
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2.5. The operator Wg. In this section, we define the operatorWg. The Lipschitz
condition (V2) with respect to such operator will be crucial to ensure existence of
a solution to (4). Then we can define:

Definition 26. Let V1, V2 ∈M(TRn). Denote by µ1 = π1#V1 and µ2 = π1#V2 the

projection of the PVF on the base space. For each pair (Ṽ1, Ṽ2) satisfying Ṽ1 ≤ V1

and Ṽ2 ≤ V2, denote by µ̃i = π1#Ṽi. Define

Wg(V1, V2) := inf

{∫
TRn×TRn

|v − w| dp(x, v, y, w) such that Ṽ1 ≤ V1,

Ṽ2 ≤ V2, p ∈ P (Ṽ1, Ṽ2), π13#p ∈ P opt(µ̃1, µ̃2), and (29)

W g(µ1, µ2) = |µ1 − µ̃1|+W (µ̃1, µ̃2) + |µ2 − µ̃2|

}
.

In the definition above, one can observe that the condition W g(µ1, µ2) = |µ1 −
µ̃1| + W (µ̃1, µ̃2) + |µ2 − µ̃2| is equivalent to state that µ̃1, µ̃2 is a minimizer in
Definition 7.

Remark 27. One might require the minimization of the functional |V1 − Ṽ1| +∫
TRn×TRn |v−w| dp(x, v, y, w) + |V2− Ṽ2| in (29), that seems more close to the defi-

nition of W g. Nevertheless, recall that that |Vi− Ṽi| = |µi− µ̃i|. As a consequence,
when the choice of the minimizer for W g(µ1, µ2) is unique, there is no difference for
the minimization of the two functionals. When minimizers for W g(µ1, µ2) are not

unique, this would introduce two additional terms |Vi − Ṽi| in the right hand side
of (30), thus providing a less restricitve inequality.

Moreover, the chosen definition of Wg is correct to prove existence of a solution
to (4), that is the main goal of this paper. This definition would indeed be natural
in the estimate (52) below.

When two measures µ1, µ2 have the same mass |µ1| = |µ2| and have sufficiently
near supports, one can choose µ̃i = µi among the minimizers of W g(µ1, µ2). More-
over, if µ1 ⊥ µ2, i.e. the two measures have no shared mass, such choice is the
unique minimizer. In this case, the choice Ṽi = Vi is unique too, and the operator
Wg coincides with W.

Similarly to W, the operator Wg is then not a distance: the same counterexam-
ples with sufficiently near supports and no shared mass can be found. For example,
choose µ1 = δ0, µ2 = δε, V1 = δ0 ⊗ δ0, V2 = δε ⊗ δ0, with ε > 0 sufficiently small.
The unique minimizer in (29) is given by µ̃i = µi and Ṽi = Vi, that in turn gives
Wg(V1, V2) = 0, even though V1 6= V2.

Again, similarly to the estimate (18) between the standard generalized Wasser-
stein and the operator W, one can easily prove the following proposition.

Proposition 28. Given V1, V2 ∈M(TRn) two PVFs, it holds

W g(V1, V2) ≤ Wg(V1, V2) +W g(π1#V1, π1#V2). (30)

Proof. First estimate W g(V1, V2) from above by choosing Ṽ1, Ṽ2 being minimizers
of Wg(V1, V2) in the right-hand side of (10). Similarly, estimate the Wasserstein

distanceW (Ṽ1, Ṽ2) from above by using the transference plan p realizingWg(V1, V2).
It then holds

W g(V1, V2) ≤ |V1 − Ṽ1|+W (Ṽ1, Ṽ2) + |V2 − Ṽ2| ≤ |µ1 − µ̃1|+W(Ṽ1, Ṽ2) +

W (µ̃1, µ̃2) + |µ2 − µ̃2| = W g(µ1, µ2) +W(Ṽ1, Ṽ2).
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We used here that |Vi − Ṽi| = |µi − µ̃i| since Ṽi ≤ Vi and µ̃i ≤ µi. We also used
(18) and the fact that µ̃1, µ̃2 is a minimizer for W g(µ1, µ2).

We are now left to prove that W(Ṽ1, Ṽ2) = Wg(Ṽ1, Ṽ2). First, it clearly holds

W(Ṽ1, Ṽ2) ≥ Wg(Ṽ1, Ṽ2), since the minimization on the right hand side takes place
in a larger space. By contradiction, if a strict inequality holds true, there exists a
decomposition (V̂1, V̂2) satisfying V̂i < Ṽi and minimizing Wg(Ṽ1, Ṽ2). This means

that there exists q ∈ P (V̂1, V̂2) such that∫
TRn×TRn

|v − w| dq(x, v, y, w) <W(Ṽ1, Ṽ2).

By defining µ̂i = π1#V̂i, it holds

W g(µ̃1, µ̃2) = |µ̃1 − µ̂1|+W (µ̂1, µ̂2) + |µ̃2 − µ̂2|,

with π13#q ∈ P opt(µ̂1, µ̂2). Also recall that W g(µ̃1, µ̃2) ≤W (µ̃1, µ̃2), by (12).

Observe now that V̂1, V̂2 is a possible decomposition to estimate Wg(V1, V2) in

(29), with transference plan q. Indeed, it first holds V̂i ≤ Ṽi ≤ Vi, thus |µi − µ̂i| =
|µi − µ̃i|+ |µ̃i − µ̂i|. This implies that

|µ1 − µ̂1|+W (µ̂1, µ̂2) + |µ2 − µ̂2| =
|µ1 − µ̃1|+ |µ̃1 − µ̂1|+W (µ̂1, µ̂2) + |µ̃2 − µ̂2|+ |µ2 − µ̃2| =
|µ1 − µ̃1|+W g(µ̃1, µ̃2) + |µ2 − µ̃2| ≤ |µ1 − µ̃1|+W (µ̃1, µ̃2) + |µ2 − µ̃2| =
W g(µ1, µ2),

i.e. the decomposition µ̂1, µ̂2 realizes the minimizer of W g(µ1, µ2). Since π13#q ∈
P opt(µ̂1, µ̂2), one can write by the contradiction hypothesis that it holds∫

TRn×TRn
|v − w| dq(x, v, y, w) =Wg(Ṽ1, Ṽ2) <W(Ṽ1, Ṽ2) =Wg(V1, V2).

This contradicts the definition ofWg as the infimum of the functional
∫
TRn×TRn |v−

w| dp(x, v, y, w).

3. Proof of the main theorems. In this section, we prove the main results of
this article, that are Theorem 3 about existence of solutions to (4) and Theorem 4
about uniqueness.

3.1. Existence - Proof of Theorem 3. In this section, we prove Theorem 3 about
existence of solutions to (4). The idea is to define Lattice Approximate Solutions
described in Definition 20, then pass to the limit. We already used this procedure
to estimate each term in (4) separately, namely the PVF studied in (1) and the
source in (3).

Proof of Theorem 3. We first fix an initial data µ0 and prove the existence of a
solution to (4) with initial data µ0, that has bounded support and is Lipschitz with
respect to time. This corresponds to prove Properties 1-2-3a-3c in the Definition 2
of semigroups for (4). We will then prove Property 3b.

Fix an initial data µ0. For eachN , define the following approximated solution µN ,
based on the discretization in Definition 18: set µN (0) := AxN (µ0), then recursively

µN ((k + 1)∆N ) :=
∑
i,j

mv
ij(V [µN (k∆N )])δxi+∆Nvj + ∆NAxN (s[µN (k∆N )]). (31)
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Also define the interpolated measure for τ ∈ [0,∆N ] as follows:

µN (k∆N + τ) :=
∑
i,j

mv
ij(V [µN (k∆N )])δxi+τvj + τAxN (s[µN (k∆N )]). (32)

Clearly, the first term on the right hand side corresponds to the transport by the
PVF V , while the second term corresponds to the source term s. We now prove
that the sequence µN (t) is equi-bounded and equi-integrable on a complete space,
to apply the Ascoli-Arzelà theorem.

We first prove that, for a fixed T > 0, the measures µN (t) are all supported
in a compact set. Choose the radius R in hypothesis (s2) giving the maximal
support of s[µ]. Then, eventually enlarging R, one can assume that supp(µ(0)) ⊂
B(0, R). This implies supp(µN (0)) ⊂ B(0, R +

√
n
2 ∆x

N ) ⊂ B(0, R + 1), where n
is the dimension of the space Rn and N is chosen sufficiently large. Observe the
following simple estimate: if supp(µN (k∆N )) ⊂ B(0, r) with r > R + 1, then it
holds supp(µN (k∆N + τ)) ⊂ B(0, r + ∆NC(1 + r)) for τ ∈ (0,∆N ). Indeed:

• for each term i, j in the first term it holds that (xi, vj) ∈ supp(V [µN (k∆N )])
implies |vj | ≤ C(1 + r) by Hypothesis (V1), hence

supp(δxi+τvj ) ⊂ B(0, r + ∆NC(1 + r));

• for the second term it holds supp(s[µN (k∆N )]) ⊂ B(0, R), hence

∆NAxN (s[µN (k∆N )]) ⊂ B(0, R+ 1) ⊂ B(0, r).

Since summing measures with the same support is a closed operation, it holds
supp(µN (k∆N+τ)) ⊂ B(0, r+∆NC(1+r)). Eventually replacing r by max {1, r}, it
holds by induction supp(µN (k∆N+τ)) ⊂ B(0, r(1+2C∆N )k+1). Since k ≤ T

∆N
+1,

this implies supp(µN (t)) ⊂ B(0, r(1 + 2C)2e2CT ) for all t ∈ [0, T ]. Observe that the

space X = B(0, r(1 + 2C)2e2CT ) is compact. Then, the space M(X) of measures
with finite mass endowed with the generalized Wasserstein distance W g is complete,
see Proposition 12. Moreover, if we prove that the limit of a subsequence of µN

exists, then it satisfies Property 3a in Definition 2.
We now prove that the sequences µN (t) are equi-Lipschitz in time with respect

to the distance W g. We also prove that the masses |µN (t)| are uniformly bounded.
First observe that the operator µ → AxN (µ) does not increase the mass of µ. The
same property holds for the operator µ →

∑
i,jm

v
ij(V [µ])δxi+τvj . Then, by the

explicit expressions (31)-(32) for µN (t), it holds

W g(µN (k∆N + τ), µN (k∆N + σ)) ≤∑
i,j

mv
ij(V [µN (k∆N )])|τ − σ||vj |+ |τ − σ||s[µN (k∆N )]| ≤

≤ |τ − σ| |µN (k∆N )| sup
j
|vj |+ |τ − σ|(W g(s[µN (k∆N )], s[µ0]) + |s[µ0]|),

for τ, σ ∈ [0,∆N ]. Here, we estimated the generalized Wasserstein distance by
decomposing it in the Wasserstein distance for the transport term given by the
PVF V , and the L1 distance for the source term given by s. Use now (11) to
estimate |µN (k∆N )| ≤ |µ0| + W g(µN (k∆N ), µ0). Use uniform boundedness of
the supports for µN (k∆N ) and Hypothesis (V1) to estimate supj |vj | ≤ C1 :=

C(1 + diam(X)). Also use Hypothesis (s1) to estimate W g(s[µN (k∆N )], s[µ0]) ≤
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LW g(µN (k∆N ), µ0). This gives

W g(µN (k∆N + τ), µN (k∆N + σ)) ≤
|τ − σ|C1(|µ0|+W g(µN (k∆N ), µ0)) + |τ − σ|(|s[µ0]|+ LW g(µN (k∆N ), µ0))

= |τ − σ|(C2W
g(µN (k∆N ), µ0) + C2), (33)

where C2 is a constant depending on |µ0| and X only, i.e. independent on N .
We now prove that W g(µN (k∆N ), µ0) is bounded, uniformly in N, k. Ob-

serve that the sequence µN (0) for N sufficiently large satisfies W g(µN (0), µ0) ≤
W (µN (0), µ0) ≤ |µ0|∆N , as a consequence of (12) and Proposition 19. Thus, there
exists a constant C3 such that W g(µN (0), µ0) ≤ C3 for all N . We now prove the
estimate

W g(µN (k∆N ), µ0) ≤ (1 + C2∆N )kC3 + ((1 + C2∆N )k − 1), (34)

by induction on k. The case k = 0 is already proved. We now prove that, if the
estimate holds for k, then it holds for k+ 1 too. Use (33) with τ = 0, σ = ∆N , that
gives

W g(µN ((k + 1)∆N ), µ0) ≤
W g(µN ((k + 1)∆N ), µN (k∆N )) +W g(µN (k∆N ), µ0) ≤
(1 + C2∆N )W g(µN (k∆N ), µ0) + C2∆N ≤
(1 + C2∆N )k+1C3 + (1 + C2∆N )((1 + C2∆N )k − 1) + C2∆N =

(1 + C2∆N )k+1C3 + ((1 + C2∆N )k+1 − 1).

The estimate (34) is now proved. Since k ≤ T/∆N , it also holds

W g(µN (k∆N ), µ0) ≤ C4 := eC2TC3 + (eC2T − 1).

Then, again by (33) and triangular inequalities, it holds

W g(µN (t), µN (s)) ≤ |t− s|C5, (35)

with C5 := C2C4 + C2, i.e. uniform Lipschitz continuity with respect to t of the
sequence µN . Moreover, (11) also implies |µN (t)| ≤ C6 := |µ0| + TC5, hence
uniform boundedness of the mass. As a consequence, Ascoli-Arzelà theorem implies
existence of a converging subsequence µN , that we do not relabel. Such limit µ∗(t)
clearly satisfies Property 1 and Property 3c in Definition 2.

We now prove Property 2, i.e. the fact that the limit is a solution to (4). Since
the limit is uniformly Lipschitz and with bounded mass, it is easy to prove that the
two first properties in Definition 1 are satisfied, as well as the fact that the function
t→

∫
Rn fdµ(t) is absolutely continuous (and even Lipschitz) for each f ∈ C∞c (Rn).

We are left to prove that the limit µ∗ satisfies (5) for each f ∈ C∞c (Rn) and almost
each t ∈ [0, T ]. For a fixed f ∈ C∞c (Rn), define the operator FN for τ, σ ∈ [0, T ] as
follows:

FN (τ, σ) :=

∫
Rn
f(x) d(µN (σ)− µN (τ))−∫ σ

τ

dt

(∫
TRn
∇f(x) · v dV [µN (t)]) +

∫
Rn
f(x) ds[µN (t)]

)
. (36)
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For each τ, σ ∈ [k∆N , (k + 1)∆N ], the first term in the right hand side of (36)
coincides with∫

Rn
f(x)

(∑
i,j

mv
ij(V [µN (k∆N )])d(δxi+(σ−k∆N )vj − δxi+(τ−k∆N )vj )

+(σ − τ) dAxN (s[µN (k∆N )])

)
. (37)

Define

gij(α) := f(xi + α(σ − k∆N )vj)− f(xi + α(τ − k∆N )vj), (38)

that satisfies gij(1) =
∫
Rn f(x)d(δxi+(σ−k∆N )vj − δxi+(τ−k∆N )vj ). By applying Tay-

lor’s theorem with Lagrange remainder to each gij , there exist αij ∈ (0, 1) such that
(38) coincides with

gij(1) = (σ − τ)∇f(xi) · vj +

vj · ((σ − k∆N )2Hf(xi + αijσvj)− (τ − k∆N )2Hf(xi + αijτvj)) · vj ,

where Hf is the Hessian of f .
We now estimate FN (τ, σ) with τ, σ ∈ [k∆N , (k + 1)∆N ]. It holds

|FN (τ, σ)| ≤
∣∣∣∣∑
i,j

gij(1)mv
ij(V [µN (k∆N )])−

∫ σ

τ

dt

∫
TRn
∇f(x) · v dV [µN (t)])

∣∣∣∣
+

∣∣∣∣(σ − τ)

∫
Rn
f(x) dAxN (s[µN (k∆N )])−

∫ σ

τ

dt

∫
Rn
f(x) ds[µN (t)]

∣∣∣∣ . (39)

The first term on the right hand side of (39) is bounded from above by
∫ σ
τ
I1(t) dt+

I2(τ, σ), where

I1(t) :=

∣∣∣∣∣∣
∑
i,j

∇f(xi) · vjmv
ij(V [µN (k∆N )])−

∫
TRn
∇f(x) · v dV [µN (t)])

∣∣∣∣∣∣ =

=

∣∣∣∣∫
TRn
∇f(x) · v dAvN (V [µN (k∆N )])−

∫
TRn
∇f(x) · v dV [µN (t)])

∣∣∣∣ ,
I2(τ, σ) :=

∣∣∣∣∣∣
∑
i,j

vj · H̃(σ, τ) · vjmv
ij(V [µN (k∆N )])

∣∣∣∣∣∣ ,
with

H̃(σ, τ) := ((σ − k∆N )2Hf(xi + αijσvj)− (τ − k∆N )2Hf(xi + αijτvj)).

The second term on the right hand side of (39) is bounded from above by
∫ σ
τ
I3(t) dt,

where

I3(t) :=

∣∣∣∣∫
Rn
f(x) dAxN (s[µN (k∆N )])−

∫
Rn
f(x) ds[µN (t)]

∣∣∣∣ .
By the duality formulas for the generalized Wasserstein and the L1 distance (15)-

(14), the Lipschitz condition (35) and the estimate |t−k∆N | ≤ ∆N , for a sufficiently
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large N it holds

I1(t) ≤ ‖∇f · v‖C1W g(AvN (V [µN (k∆N )]), V [µN (t)]) ≤
‖f‖C2‖v‖C1

(
W g(AvN (V [µN (k∆N )]), V [µN (k∆N )]) +

W g(V [µN (k∆N )], V [µN (t)])
)
≤

‖f‖C2(C1 + 1)(∆N |V [µN (k∆N )]|+ |t− k∆N |C5) ≤
∆N‖f‖C2(C1 + 1)(C6 + C5). (40)

We recall that the support of the velocities is bounded (supj |vj | ≤ C1), and that
the projection condition π#V [µ] = µ implies |V [µ]| = |µ|. Similarly, for I2(τ, σ),
by removing and adding the term (τ − k∆N )2Hf(xi + αijσvj)), it holds

I2(τ, σ) ≤
∑
i,j

‖f‖C2(nC1)2((σ − k∆N )2 − (τ − k∆N )2)mv
ij(V [µN (k∆N )]) +

∑
i,j

(nC1)2(τ − k∆N )2Hijm
v
ij(V [µN (k∆N )]),

where Hij := ‖Hf(xi + αijσvj)−Hf(xi + αijτvj)‖Rn,Rn with ‖ · ‖Rn,Rn being the
operator norm. Apply the mean-value theorem to Hf , to have

‖Hf(xi + αijσvj)−Hf(xi + αijτvj)‖Rn,Rn ≤ αij(σ − τ)vj‖f‖C3 .

Recall that σ − k∆N , τ − k∆N ≤ ∆N as well as αij ∈ (0, 1). It then holds

I2(τ, σ) ≤ ‖f‖C2(nC1)2(σ − τ)2∆N |V [µN (k∆N )]|+
(nC1)3∆2

N (σ − τ)‖f‖C3 |V [µN (k∆N )]|
≤ (σ − τ)∆N (nC1)3C6‖f‖C3(2 + ∆N ). (41)

Finally, for I3(t) it holds

I3(t) ≤ ‖f‖C1W g(AxN (s[µN (k∆N )]), s[µN (t)]) ≤

‖f‖C1

(
W (AxN (s[µN (k∆N )]), s[µN (k∆N )]) +

W g(s[µN (k∆N )], s[µN (t)])

)
≤

‖f‖C1(∆N |s[µN (k∆N )]|+ LC5∆N ). (42)

Observe that (11) implies∣∣s[µN (k∆N )]
∣∣ ≤ |s[µ0]|+W g(s[µN (k∆N )]|, s[µ0]) ≤ |s[µ0]|+

L(W g(µN (k∆N ), µN (0)) +W g(µN (0), µ0)) ≤
|s[µ0]|+ LC5T + L|µ0|∆N . (43)

Merging (40)-(41)-(42)-(43), it then holds

|FN (τ, σ)| ≤ |τ − σ|∆N‖f‖C3C7,

for a suitable constant C7. Take now a general pair τ, σ ∈ [0, T ]. For simplicity,
assume that τ < σ and that N is sufficiently large to have

(k1 − 1)∆N ≤ τ < k1∆N ≤ k2∆N < σ ≤ (k2 + 1)∆N ,
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for some k1, k2 ∈ N \ {0}. Our aim is to prove that it holds limσ→τ L = 0, with

L :=
1

σ − τ

(∫
Rn
f(x) d(µ∗(σ)− µ∗(τ))−

∫ σ

τ

dt

∫
TRn
∇f(x) · v dV [µ∗(t)]−

∫ σ

τ

dt

∫
Rn
f(x) ds[µ∗(t)]

)
.

Observe that, restricting ourselves to the converging subsequence µN ⇀ µ∗, it holds

L = lim
N→∞

1

σ − τ

(∫
Rn
f(x) d(µN (σ)− µN (τ))

−
∫ σ

τ

dt

∫
TRn
∇f(x) · v dV [µN (t)]−

∫ σ

τ

dt

∫
Rn
f(x) ds[µN (t)]

)
.

We used here continuity of both V and s with respect to weak convergence of
measures, as a consequence of (30) and (V2) for V , and (s1) for s. Observe that
L coincides with

lim
N→∞

1

σ − τ

(
FN (τ, k1∆N ) +

k2−1∑
k=k1

FN (k∆N , (k + 1)∆N ) + FN (k2∆N , σ)

)
,

thus

lim
σ→τ
|L| ≤ lim

σ→τ

1

|σ − τ |
lim
N→∞

(|τ − k1∆N |+ . . .+ |k2∆N − σ|)∆N‖f‖C3C7 = 0.

We finally prove Property 3b in Definition 2. Take two different data µ0, ν0 and
build the Lattice Approximate Solutions µN , νN according with scheme (31)-(32).
Assume to have N sufficiently large so that it holds

AxN [µN (k∆N )] = µN (k∆N ), (44)

for all k ∈ N with k ≤ T/∆N , and similarly for νN . Such N exists, for two reasons:
first, µN , νN have uniformly bounded support (Property 3a proved above), thus for
N sufficiently large AxN conserves the mass. Second, observe that µN (0) satisfies
(44) by construction, and that if µN (k∆N ) satisfies it, then µN ((k+1)∆N ) satisfies
it too. Then, by induction, this holds for all k.

Similarly, we assume to have N sufficiently large to have

π1#AvN (V [µN (k∆N )]) = π1#V [µN (k∆N )], (45)

and similarly for νN . This is first based on the fact that uniform bounded supports
of the measure µNt (Property 3a proved above), together with support sublinearity
(V1) of V implies uniform boundedness of the supports of the PVF V [µNt ], thus
AvN conserves the mass for N sufficiently large. As soon as |AvN (V [µN (k∆N )])| =
|π1#V [µN (k∆N )]|, one has that the support of π1#AvN (V [µN (k∆N )]) coincides
with AxN (µN (k∆N )), since π1#V [µ] = µ and the discretization (19) has the same
effect of AxN on the base space. Then, (44) implies (45).

Moreover, since (45) holds, one has that any transference plan

p ∈ P (AvN (V [µN (k∆N )]), V [µN (k∆N )])

that satisfies π13#p ∈ P opt(µN (k∆N ), µN (k∆N )) is indeed a.e.-µN (k∆N ) concen-
trated on the diagonal {x = y} of Rn × Rn. As a consequence, one can estimate
Wg(AvN (V [µN (k∆N )]), V [µN (k∆N )]) by choosing in the right hand side of (29) the
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decomposition Ṽ1 = AvN (V [µN (k∆N )]), Ṽ2 = V [µN (k∆N )] and the transference
plan p realizing W (V [µN (k∆N )],AvN (V [µN (k∆N )])). Such choice implies

Wg(AvN (V [µN (k∆N )]), V [µN (k∆N )]) ≤
W (AvN (V [µN (k∆N )]), V [µN (k∆N )]) ≤ |µN (k∆N )|∆v

N . (46)

We now estimate recursively W g(µN ((k+ 1)∆N ), νN ((k+ 1)∆N )) starting from
W g(µN (k∆N ), νN (k∆N )). Consider the PVFs

V1 := AvN (V [µN (k∆N )]), V2 = AvN (V [νN (k∆N )]),

and the operatorWg(V1, V2). By definition ofWg, there exist a choice Ṽ1 ≤ V1, Ṽ2 ≤
V2, and a transference plan p ∈ P (Ṽ1, Ṽ2) with the two following properties: one
one side, it holds

Wg(V1, V2) =

∫
TRn×TRn

|v − w| dp(x, v, y, w);

on the other side, denoting with µ̃i = π1#Ṽi, it holds

W g(µN (k∆N ), νN (k∆N )) = |µN (k∆N )− µ̃1|+W (µ̃1, µ̃2) + |νN (k∆N )− µ̃2|,
and W (µ̃1, µ̃2) is realized by the transference plan π13#p ∈ P (µ̃1, µ̃2).

Consider now the following corresponding decomposition: write µN (k∆N ) =∑
imiδxi +

∑
j njδyj and νN (k∆N ) =

∑
l plδzi +

∑
j njδtj , where µ̃1 =

∑
j njδyj ,

µ̃2 =
∑
j njδtj , and the optimal transference plan π13#p sends each njδyj to each

njδtj . Decompose accordingly the PFV as follows:

V1 =
∑
i,k

mikδ(xi,vk) + Ṽ 1 with Ṽ 1 :=
∑
j,k

njkδ(yj ,vk),

and similarly

V2 =
∑
l,k

plkδ(zi,v′k) + Ṽ 2 with Ṽ 2 :=
∑
j,k

njkδ(tj ,v′k),

with the additional requirement that the optimal transference plan p ∈ P (Ṽ 1, Ṽ 2)
sends njkδ(yj ,vk) to njkδ(tj ,v′k).

By definition of µN , it then holds

µN ((k + 1)∆N ) =
∑
ik

mikδxi+∆Nvk +
∑
jk

njkδyj+∆Nvk ,

and similarly for νN ((k+1)∆N ). Estimate the distance W g(µN ((k+1)∆N ), νN ((k+
1)∆N )) by choosing the first component for mass removal and the second one for
transport. It then holds

W g(µN ((k + 1)∆N ), νN ((k + 1)∆N )) ≤∑
ik

|mik|+
∑
jk

njk|yj + ∆Nvk − tj −∆Nv
′
k|+

∑
lk

|plk| ≤∑
i

mi +
∑
j

nj |yj − tj |+ ∆N

∑
jk

njk|vk − v′k|+
∑
l

pl =

W g(µN (k∆N ), νN (k∆N )) + ∆NWg(V1, V2). (47)

We now need to compareWg(V1, V2) withWg(V [µN (k∆N )], V [νN (k∆N )]). Denote

with Ṽ1, Ṽ2 the decomposition and p ∈ P (Ṽ1, Ṽ2) the transference plan in (29) realiz-

ing Wg(V [µN (k∆N )], V [νN (k∆N )]). Observe that π1#Ṽ1 ≤ π1#(V [µN (k∆N )]) =
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µN (k∆N ) that is a finite sum of Dirac deltas, and the same holds for π1#Ṽ2. Thus,
p can be decomposed as follows

p :=
∑
i,k

pik(v, w)δxi,yk , (48)

where each pik is a transference plan on TxiRn × TykRn.
We are now ready to define a decomposition V̄1 ≤ V1, V̄2 ≤ V2 and a transference

plan q ∈ P (V̄1, V̄2) to estimate Wg(V1, V2) from above. For each transference plan
pik, define

qik :=
∑
jl

pik((vj +Q′)× (wl +Q′))δvj ,wl ,

where the vj , wl are the equispaced discretized points on TxRn, TyRn, respectively,
and Q′ is defined in Definition 18. Then define

q :=
∑
i,k

qikδxi,yk . (49)

Define now V̄1 := π12#q. By the definition of AvN in (19) and of q in (49), it is
easy to prove that it holds

V̄1 = π12#q = AvN (π12#p) = AvN (Ṽ1) ≤ AvN (V [µN (k∆N )]) = V1.

One can equivalently prove that it holds V̄2 := π34#q ≤ V2. Moreover, it holds
π13#q = π13#p ∈ P opt(µN (k∆N )], νN (k∆N )), where we used that p is a mini-
mizer of Wg(V [µN (k∆N )], V [νN (k∆N )]). Then, the decomposition V̄1, V̄2 with the
transference plan q is admissible in the right hand side of (29). It then holds

Wg(V1, V2) ≤
∫
TRn×TRn

|v − w| dq(x, v, y, w) =∑
ij

∫
TxiRn×TykRn

|v − w| dqik(v, w). (50)

We estimate each term by following the definition of qik, as follows∫
TxiRn×TykRn

|v − w| dqik(v, w) =
∑
jl

|vj − wl| dqik(v, w) =

∑
jl

|vj − wl|pik((vj +Q′)× (wl +Q′)) ≤

∑
jl

(|v − w|+ 2diam(Q′))(pik)|((vj+Q′)×(wl+Q
′))
.

Here, we used that |vj −wk| ≤ |vj − v|+ |v−w|+ |v−wk| for any v ∈ vj +Q′ and
w ∈ wl +Q′. Observe now that, by decomposition, it holds∑

jl

(|v − w|+ 2diam(Q′))(pik)|((vj+Q′)×(wl+Q
′))

=∫
TxiRn×TykRn

|v − w| dpik + 2diam(Q′)|pik|.

Summing over ik in (50) and recalling the definition of p in (48), we have

Wg(V1, V2) ≤
∫
TRn×TRn

|v − w||v − w| dp+ 2diam(Q′)|p| ≤

Wg(V [µN (k∆N )], V [νN (k∆N )]) + 2
√
n∆N |µN (k∆N )|. (51)
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We used here that diam(Q′) ≤
√
n∆N as a consequence of Definition 18, as well as

the fact that it holds

|p| = |π12#p| ≤ |V [µN (k∆N )]| = |µN (k∆N )| ≤ C6.

Going back to (47), and using the Lipschitz continuity hypothesis (V2) in (51),
it holds

W g(µN ((k + 1)∆N ), νN ((k + 1)∆N )) ≤
(1 +K)W g(µN (k∆N ), νN (k∆N )) + 2

√
n(∆N )2C6. (52)

Clearly, this estimate implies

W g(µN (t), νN (t)) ≤ eKtW g(µN (0), νN (0)) + 2
√
n(∆N )2C6

eKt − 1

K
,

as long as t = k∆N . By uniform Lipschitz continuity given by (35), and Proposition
19, this implies

W g(µN (t), νN (t)) ≤ eKtW g(µ0, ν0) + 2C6∆N + 2
√
n(∆N )2C6

eKt − 1

K
. (53)

We now use a density argument to pass to the limit. Consider the countable set

D =

{
µ0 ∈M s.t. µ0 =

∑
i

miδxi , 0 < mi ∈ Q, xi ∈ Qn
}
.

Choose a µ0 ∈ D, define the corresponding sequence µN0 and choose a subsequence

Nk such that µNk0 uniformly converges to a solution µ(t) to (4). Then choose µ1 ∈ D,

consider the subsequence µNk1 and choose a converging subsequence µ
Nkl
1 . Repeat

this diagonal argument for the countable set of initial data in D, and observe that,
passing to the limit in (53) for N →∞, it holds

W g(µ(t), ν(t)) ≤ eKtW g(µ0, ν0),

for all µ0, ν0 ∈ D. Observe now that D is dense inM, thus the continuous semigroup
µ0 → Stµ0 = µ(t) can be uniquely extended from D to M. �

3.2. Uniqueness. We now prove Theorem 4, i.e. uniqueness of a solution to (4)
when a Dirac germ γ is fixed. We first need to define compatibility of a semigroup
for the dynamics (4), that is the following.

Definition 29. Fix a PVF V satisfying (V1), a final time T > 0 and a Dirac germ
γ as in Definition 22. A semigroup for (4) is said to be compatible with γ if one
has the following property: for each R,M > 0 there exists C(R,M) such that the
space MD

R,M :=
{
µ ∈MD s.t. supp(µ) ∈ B(0, R), |µ| ≤M

}
satisfies

for all t ∈ [0, inf
µ∈MD

R,M

ε(µ)] one has sup
µ∈MD

R

W g(Stµ, γµ(t)) ≤ C(R,M)t2. (54)

Observe that this definition coincides with Definition 23, where the dynamics (1)
is replaced by (4) and the metric W is replaced by W g.

The proof of Theorem 4 is then based on the following Lemma.

Lemma 30. Let S be a Lipschitz semigroup and µ : [0, T ] → M a Lipschitz con-
tinuous curve. It then holds

W g(Stµ(0), µ(t)) ≤ eCt
∫ t

0

lim inf
h→0+

W g(Shµ(s), µ(s+ h)) ds,

where C is the Lipschitz constant in Property 3b of Definition 2.



MEASURE DYNAMICS WITH PVF AND SOURCES 6229

Proof. The original proof in Banach spaces can be found in [4, Thm 2.9]. Its
adaptation to metric spaces can be found in [22, Appendix A].

We are now ready to prove Theorem 4.

Proof of Theorem 4. Assume to have two semigroups S1
t , S

2
t for solutions to (4), both

compatible with a given germ γ. Fix an initial data µ0 ∈M and T ≥ 0. By Property
3a in the Definition 2, there exists R > 0 such that supp(S1

t µ0) ∪ supp(S2
t µ0) ⊂

B(0, R) for all t ∈ [0, T ]. By applying Lemma 30 with µ(t) = S2
t , it holds

W g(S1
t µ0, S

2
t µ0) ≤ eCt

∫ t

0

lim inf
h→0+

W g(S1
hS

2
sµ0, S

2
s+hµ0) ds, (55)

Fix s > 0 and define ν = S2
sµ0. By density of MD in M with respect to the

topology induced by W g, for each ε > 0 there exists ν̄ ∈MD such that W g(ν, ν̄) <
ε. Property (54) applied to both S1

h and S2
h implies the existence of a constant

C1(R,M) such that

W g(S1
hν̄, γν̄(h)) ≤ C1(R,M)h2, W g(S2

hν̄, γν̄(h)) ≤ C1(R,M)h2.

It then holds

W g(S1
hS

2
sµ0, S

2
s+hµ0) ≤ W g(S1

hν, S
1
hν̄) +W g(S1

hν̄, γν̄(h)) +W g(γν̄(h), S2
hν̄) +

W g(S2
hν̄, S

2
hν) ≤ 2(eChε+ C1(R,M)h2).

Since s has been chosen arbitrarily and ε is arbitrarily small for the density property,
it holds

lim inf
h→0+

1

h
W g(S1

hS
2
sµ0, S

2
s+hµ0) = 0,

for each s > 0. This estimate applied to (55) implies S1
t µ0 = S2

t µ0 for any t ≥ 0
and any initial data µ0, i.e. S1 = S2. �
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