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Abstract: Models of social influence may present discontinuous dynamical rules, which are
unavoidable with topological interactions, i.e. when the dynamics is the outcome of interactions
with a limited number of nearest neighbors. Here, we show that classical solutions are not
sufficient to describe the resulting dynamics. We first describe the time evolution of the
interaction graph associated to Caratheodory solutions, whose properties depend on the
dimension of the state space and on the number of considered neighbors. We then prove the
existence of Caratheodory solutions for 2-nearest neighbors, via a constructive algorithm.
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1. INTRODUCTION AND SUMMARY OF RESULTS

Researchers from many different fields have explored the
behavior of large systems of active particles, such as dy-
namics of opinions in social networks, animal groups, net-
worked robots, pedestrian dynamics and language evolu-
tion. Their dynamics is written as an Ordinary Differential
Equation (ODE in the following) in large dimension. One
of the main phenomena is self-organization of the system,
stemming from simple interaction rules at the particle
level. Such interaction rules are often motivated by rela-
tionships among agents; thus, corresponding evolutions are
referred to as social dynamics, see Aydoğdu et al. (2017).

The description of social dynamics may require ODEs with
discontinuous vector fields, as we will show in the present
paper. Several concepts of solutions have been defined in
mathematical analysis and in control theory, such as clas-
sical, Caratheodory, Filippov, Krasovsky, Clarke-Ledyaev-
Sontag-Subbotin and stratified solutions. In this article, we
will only focus on Caratheodory solutions, for which we
recall the precise definition in Section 2.1 below. For a
thorough discussion on these different concepts of solutions
in social dynamics models, see e.g. Ceragioli et al. (2021a);
Piccoli and Rossi (2021); Ceragioli et al. (2021b); Ceragioli
and Frasca (2012, 2018a,b).

We now informally describe the opinion dynamics model
that we analyze in the present article, whose basic idea
is that trust towards others has limitations. Some earlier
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work (by Hegselmann and Krause (2002) and followers)
has assumed that an individual is influenced by others
only if opinions are not too far from one another. Here,
we describe the fact that one’s confidence towards others is
limited by the so-called topological interactions: we assume
that an individual follows only a fixed number κ ≥ 1
of neighbors, whose opinions are the nearest to his own.
Topological interactions can be motivated by cognitive
limits of the individuals on the number of significant
relationships with other individuals (see Dunbar (1992)).
These limitations are particularly meaningful in the dy-
namics of contemporary society, where potential contacts
and available information are virtually unlimited. The pre-
cise mathematical description of the model is postponed
to Section 2.

The main results of this article are the following. First,
we study the evolution of the interaction graph for
Caratheodory solutions, i.e. the graph of the interacting
neighbors at each instant of time. In Theorem 2, we will
show that this graph is constant for positive times only if
κ = 1 and agents interact on the real line R. Instead, the
graph can evolve in time both when κ > 1 or where the
state space for each agent is Rn with n > 1, as shown by
relevant examples. The second main result is Theorem 4,
stating that, in the case of κ = 2 neighbors, for any
initial data there exists at least one Caratheodory solution.
The presence of topological (thus, strongly discontinuous)
interactions makes the problem quite hard, and we need a
non-trivial algorithm to build the interaction graph.

The structure of the article is the following. In Section 2,
we give the precise mathematical description of the model
and recall the definitions of classical and Caratheodory
solutions as well as some known results about them.
Section 3 presents the main result (Theorem 2) about
the interaction graph and examples of solutions in which
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Padova, Padova, Italy (e-mail: francesco.rossi@math.unipd.it).

Abstract: Models of social influence may present discontinuous dynamical rules, which are
unavoidable with topological interactions, i.e. when the dynamics is the outcome of interactions
with a limited number of nearest neighbors. Here, we show that classical solutions are not
sufficient to describe the resulting dynamics. We first describe the time evolution of the
interaction graph associated to Caratheodory solutions, whose properties depend on the
dimension of the state space and on the number of considered neighbors. We then prove the
existence of Caratheodory solutions for 2-nearest neighbors, via a constructive algorithm.

Keywords: Social networks, Discontinuous ODEs, Nonlinear systems, Networked systems

MSC 2020 Classification: 34A36, 91D30, 91C20.

1. INTRODUCTION AND SUMMARY OF RESULTS

Researchers from many different fields have explored the
behavior of large systems of active particles, such as dy-
namics of opinions in social networks, animal groups, net-
worked robots, pedestrian dynamics and language evolu-
tion. Their dynamics is written as an Ordinary Differential
Equation (ODE in the following) in large dimension. One
of the main phenomena is self-organization of the system,
stemming from simple interaction rules at the particle
level. Such interaction rules are often motivated by rela-
tionships among agents; thus, corresponding evolutions are
referred to as social dynamics, see Aydoğdu et al. (2017).
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Padova, Padova, Italy (e-mail: francesco.rossi@math.unipd.it).

Abstract: Models of social influence may present discontinuous dynamical rules, which are
unavoidable with topological interactions, i.e. when the dynamics is the outcome of interactions
with a limited number of nearest neighbors. Here, we show that classical solutions are not
sufficient to describe the resulting dynamics. We first describe the time evolution of the
interaction graph associated to Caratheodory solutions, whose properties depend on the
dimension of the state space and on the number of considered neighbors. We then prove the
existence of Caratheodory solutions for 2-nearest neighbors, via a constructive algorithm.

Keywords: Social networks, Discontinuous ODEs, Nonlinear systems, Networked systems

MSC 2020 Classification: 34A36, 91D30, 91C20.

1. INTRODUCTION AND SUMMARY OF RESULTS

Researchers from many different fields have explored the
behavior of large systems of active particles, such as dy-
namics of opinions in social networks, animal groups, net-
worked robots, pedestrian dynamics and language evolu-
tion. Their dynamics is written as an Ordinary Differential
Equation (ODE in the following) in large dimension. One
of the main phenomena is self-organization of the system,
stemming from simple interaction rules at the particle
level. Such interaction rules are often motivated by rela-
tionships among agents; thus, corresponding evolutions are
referred to as social dynamics, see Aydoğdu et al. (2017).
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we give the precise mathematical description of the model
and recall the definitions of classical and Caratheodory
solutions as well as some known results about them.
Section 3 presents the main result (Theorem 2) about
the interaction graph and examples of solutions in which

the interaction graph evolves in time. Section 4 contains
our main result about existence of Caratheodory solutions,
i.e. Theorem 4. Finally, Section 5 collects conclusions and
future research directions.

2. THE TOPOLOGICAL INTERACTION MODEL
AND ITS KNOWN PROPERTIES

Let us consider a set V = {1, . . . , N} of N agents with
states xi ∈ Rn (e.g. position, opinion, speed). Each agent
i ∈ V interacts with other agents belonging to a subset
of neighbors Ni(x) ⊆ V . The subset of neighbors Ni(x)
depends on the state and induces the so-called interaction
graph G(x) = (V,E), in which V is the set of nodes and
ij ∈ E is a (directed) edge if j ∈ Ni(x). The dynamics is

ẋi =
∑

j∈Ni(x)
a(|xj − xi|)(xj − xi), (1)

where the function a : [0,+∞[→ [0,+∞[ represents the
strength of interactions among agents. It satisfies the
following hypotheses from now on:

a is a non-decreasing C1-function, with a(r) > 0.

The topological interaction model is obtained when agent
i interacts only with a fixed number κ of neighbors, where
1 ≤ κ ≤ N . More precisely, for every agent i ∈ V , his
neighborhood Ni(x) is defined in the following way: the
elements of V \ {i} are ordered by increasing values of
|xj − xi|; then, the first κ elements of the list (i.e. those
with smallest distance from i) form the setNi(x) of current
neighbors of i. Should a tie between two or more agents
arise, priority is given to agents with lower index.

This continuous-time topological interaction model was
first pointed out in Aydoğdu et al. (2017), while several
other models have considered topological interactions in
different forms: see Cristiani et al. (2011); Rossi and Frasca
(2020) and references therein.

Observe the following key feature: the right hand side of
(1) is a discontinuous function, because of the possible
changes in the neighbor sets. For this reason, one needs to
carefully select a concept of solution to such discontinuous
ODE. Here, we will only consider Caratheodory solutions,
which are defined below in Section 2.1. For a thorough
discussion on these different concepts of solutions in social
dynamics models, see Ceragioli and Frasca (2018b); Piccoli
and Rossi (2021); Ceragioli et al. (2021a).

Remark 1. (Metric bounded confidence models). A related
family of bounded confidence models is given by metric
interactions: the agents in Ni(x) are all the agents within
a given radius R > 0, i.e.

Ni(x) = {j ∈ V s.t. |xj − xi| < R} .
Also in this case, the presence of the threshold implies
that the ODE in (1) has discontinuous right hand side.
Yet, metric interactions enjoy some nicer properties, such
as symmetry. See more details in Piccoli and Rossi (2021).

2.1 Caratheodory solutions

An autonomous ODE is written as:

ẋ(t) = g(x(t)) (2)

where x ∈ Rm and g : Rm → Rm is a measurable
and locally bounded function (defined at every point).

Many definitions of solutions for (2) are available, most of
which coincide when g is sufficiently regular (e.g. locally
Lipschitz). In this article we only consider the following.

Definition 1. Given the ODE (2) and T > 0, we define:

(1) A classical solution is a differentiable function
x : [0, T ] → Rm that satisfies (2) at every time
t ∈ (0, T ). At 0 and at T the equation must be satisfied
with one-sided derivatives.

(2) A Caratheodory solution is an absolutely contin-
uous function x : [0, T ] → Rm which satisfies (2)
at almost every time t ∈ [0, T ]. Equivalently, x is a
solution in integral form:

x(t) = x(0) +
∫ t

0
g(x(s)) ds.

Remark 2. Clearly, all classical solutions are Caratheodory
too. Moreover, if a classical solution with a given initial
data exists, it is unique. Insted, we will see in the following
that existence of classical solutions is not guaranteed, even
for large sets of initial data.

We will show in Examples 2-3 below that classical solutions
to (1) may not exist. For this reason, in this paper we
will concentrate on Caratheodory solutions to (1). We thus
recall from Ceragioli et al. (2021a) two facts about them.
The first one is contractivity of their support, which is a
consequence of the fact that a(r) > 0, i.e. that interactions
are always attractive.

Proposition 1. Let x(t) be a solution to (1). Then

co
({

x1(T
1), . . . , xN (T 1)

})
⊇ co

({
x1(T

2), . . . , xN (T 2)
})

,

for 0 ≤ T 1 < T 2, where the (closed) convex hull of A is

co(A) :=

{
ℓ∑

i=1

αixi : ℓ ∈ N, αi ∈ [0, 1],

ℓ∑
i=1

αi = 1, xi ∈ A

}
.

The second fact is about uniqueness of Caratheodory
solutions from almost every initial data.

Theorem 1. Uniqueness of Caratheodory solutions for the
model (1) holds for almost every initial datum, i.e. the set
of initial data in RnN for which uniqueness does not hold
has zero Lebesgue measure.

We provide a counterexample to uniqueness from specific
initial conditions in Example 1.

3. THE INTERACTION GRAPH

In this section, we define and study the graph associated
to a Caratheodory solution to (1).

Definition 2. (Associated graph). Let x(t) be a Caratheo-
dory solution to (1). Then, the associated (directed) graph
is G(x(t)) := (V,E(t)), where E(t) is composed by edges
{ij s.t. i ∈ V, j ∈ Ni(x(t))}.

For all examples in this section, we set a(r) ≡ 1. As
a consequence, the solutions of (1) are given by piecing
together solutions of linear systems.

First of all, observe that Ni(x(t)) is not uniquely de-
termined by the initial data and is not even constant
along trajectories, as the following example shows. There-
fore, the interaction graph is associated to a specific
Caratheodory solution, and not to the initial datum.
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Fig. 1. Trajectories of Example 2.

Example 1. (Non-uniqueness). Set N = 4, n = 1, κ = 1.
Consider the initial condition x = (−1, 0, 1, 1). We now
provide two Caratheodory solutions with such initial data.
The first is given by choosing the edges of the interaction
graph E(t) = {12, 23, 34, 43} for t > 0: the solution is

x(t) = (1− t exp(−t)− 2 exp(−t), 1− exp(−t), 1, 1).

Note that x(0) = x and x(t) satisfies (1) for all t > 0
but not for t = 0, hence it is not a classical solution. Also
remark that E(0) = {12, 21, 34, 43} ̸= E(t) for t > 0.
The second solution is given by setting the edges of the
interaction graph to be Ẽ(t) = {12, 23, 34, 43} for all t ≥ 0.
In this case, the solution is

x̃(t) =
(
− 1

2 − 1
2 exp(−2t),− 1

2 + 1
2 exp(−2t), 1, 1

)
.

Remark that this solution is (the unique) classical one.

In the previous example, the graph G(x(t)) is different at
time t = 0 and for t > 0. Motivated by this example, we ask
ourselves whether the associated graph of Caratheodory
solutions of (1) is always constant for t > 0. We will prove
in Theorem 2 that this fact holds true when κ = 1 and
n = 1. Instead, we now provide examples in which the
associated graph is not constant when n > 1 or κ > 1.

Example 2. (κ = 1, n = 2). In this example, we set κ = 1
and n = 2, i.e. agents evolve on the plane R2. Fix L :=√
7/8 and N = 6 agents in initial positions

x1(0) := (0, 0), x2(0) := (1, 0), x3(0) := (1.9, 0),

x4(0) := (0.5, L), x5(0) := (−0.5, L), x6(0) := (−1.4, L).

Since |x1(0)−x4(0)| = |x2(0)−x4(0)| = |x1(0)−x5(0)| > 1,
for small times the graph G(x(t)) = (V,E(t)) has the
following edges: E(t) = {12, 23, 32, 45, 56, 65}. By solving
(1), there exists a time T1 > 0 such that

|x1(T1)− x4(T1)| = |x1(T1)− x2(T1)| = |x4(T1)− x5(T1)|
> |x2(T1)− x3(T1)| = |x5(T1)− x6(T1)|.
Then, there exists T2 > T1 for which {23, 32, 56, 65} ⊂
E(t) for all t ∈ (T1, T2). In principle, one needs to choose
either 12 ∈ E(t) or 14 ∈ E(t) for t ∈ (T1, T2), and similarly
either 45 ∈ E(t) or 41 ∈ E(t). Direct computations of the
solutions of (1) show that any of the possible choices forces

|x1(t)− x4(t)| < min{|x1(t)− x2(t)|, |x4(t)− x5(t)|},
i.e. that the unique Caratheodory solution of (1) satisfies
E(t) = {14, 41, 23, 32, 56, 65} for all times t > T1.
See trajectories in Figure 1. The first component of
x1, x2, x3 is plotted as a function of time in Figure 2: the
angle in the trajectory of x1 corresponds to the change
of the interaction graph. This implies that the unique
Caratheodory solution is not differentiable in T1, hence
that no classical solution exists.

Example 3. (κ = 2, n = 1). In this example, we set κ = 2
and agents evolve on the real line R. Consider N = 6
agents with initial positions

x1(0) = −11, x2(0) = −8, x3(0) = −3,
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Fig. 2. Example 2: evolution of the first component of
x1, x2, x3.
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Fig. 3. Example 3: trajectories.

x4(0) = 3, x5(0) = 8, x6(0) = 11.

By continuity, the interaction graph is constant on a given
interval [0, T1), with edges E(t) = {12, 13, 21, 23, 32, 34, 43,
45, 54, 56, 64, 65}. By computing solutions of (1), there
exists a first time T1 > 0 such that

|x1(T1)− x3(T1)| = |x3(T1)− x4(T1)|.
On a time interval (T1, T2), one certainly keeps

{12, 13, 21, 23, 32, 45, 54, 56, 64, 65} ∈ E(t)

and might eventually replace 34 with 31 and/or 43 with
45. In reality, for any of the possible choices, it holds

max{|x1(t)− x3(t)|, |x4(t)− x6(t)|} < |x3(t)− x4(t)|.
Thus, the only admissible choice for (1) is to set {31, 45} ∈
E(t) for t ∈ (T1, T2), hence E(t) is not constant along the
trajectory. Afterwards, the graph is constant for t > T1.
The time evolution of the system is shown in Figure 3.

Remark 3. In both examples above, the Caratheodory
solution is unique and is not always differentiable, thereby
implying that no classical solution exists. Moreover, one
can perturb the given initial data to provide similar
(eventually non-symmetric) examples of initial data for
which a classical solution does not exist. This proves that
existence of classical solution is not satisfied for a open set
of strictly positive measure. Thus, existence of classical
solutions for a.e. initial data is false.

3.1 The interaction graph for κ = 1 on the real line

In this section, we prove the first main result of our article,
i.e. that the interaction graph is constant for Caratheodory
solutions of topological interaction models for κ = 1 in R.
Observe that the result is stated for a given Caratheodory
solution: different solutions starting from the same initial
datum may have different interaction graphs.

Theorem 2. Let x(t) be a Caratheodory solution for (1)
and G(x(t)) the associated graph. If κ = 1 and the state
space for agents is R, then G(x(t)) is constant for t > 0.

Proof. Step 1. We first prove that the ordering in
R is preserved by Caratheodory solutions of (1) with
κ = 1. Since the space is R, one can rearrange indexes
so that xi(0) ≤ xi+1(0) for all i ∈ V \ {N}. Moreover,
rearrangement of indexes can preserve ordering in case of
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graph E(t) = {12, 23, 34, 43} for t > 0: the solution is
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but not for t = 0, hence it is not a classical solution. Also
remark that E(0) = {12, 21, 34, 43} ̸= E(t) for t > 0.
The second solution is given by setting the edges of the
interaction graph to be Ẽ(t) = {12, 23, 34, 43} for all t ≥ 0.
In this case, the solution is
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Remark that this solution is (the unique) classical one.
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time t = 0 and for t > 0. Motivated by this example, we ask
ourselves whether the associated graph of Caratheodory
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in Theorem 2 that this fact holds true when κ = 1 and
n = 1. Instead, we now provide examples in which the
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x1(0) := (0, 0), x2(0) := (1, 0), x3(0) := (1.9, 0),

x4(0) := (0.5, L), x5(0) := (−0.5, L), x6(0) := (−1.4, L).

Since |x1(0)−x4(0)| = |x2(0)−x4(0)| = |x1(0)−x5(0)| > 1,
for small times the graph G(x(t)) = (V,E(t)) has the
following edges: E(t) = {12, 23, 32, 45, 56, 65}. By solving
(1), there exists a time T1 > 0 such that

|x1(T1)− x4(T1)| = |x1(T1)− x2(T1)| = |x4(T1)− x5(T1)|
> |x2(T1)− x3(T1)| = |x5(T1)− x6(T1)|.
Then, there exists T2 > T1 for which {23, 32, 56, 65} ⊂
E(t) for all t ∈ (T1, T2). In principle, one needs to choose
either 12 ∈ E(t) or 14 ∈ E(t) for t ∈ (T1, T2), and similarly
either 45 ∈ E(t) or 41 ∈ E(t). Direct computations of the
solutions of (1) show that any of the possible choices forces

|x1(t)− x4(t)| < min{|x1(t)− x2(t)|, |x4(t)− x5(t)|},
i.e. that the unique Caratheodory solution of (1) satisfies
E(t) = {14, 41, 23, 32, 56, 65} for all times t > T1.
See trajectories in Figure 1. The first component of
x1, x2, x3 is plotted as a function of time in Figure 2: the
angle in the trajectory of x1 corresponds to the change
of the interaction graph. This implies that the unique
Caratheodory solution is not differentiable in T1, hence
that no classical solution exists.

Example 3. (κ = 2, n = 1). In this example, we set κ = 2
and agents evolve on the real line R. Consider N = 6
agents with initial positions

x1(0) = −11, x2(0) = −8, x3(0) = −3,
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x4(0) = 3, x5(0) = 8, x6(0) = 11.

By continuity, the interaction graph is constant on a given
interval [0, T1), with edges E(t) = {12, 13, 21, 23, 32, 34, 43,
45, 54, 56, 64, 65}. By computing solutions of (1), there
exists a first time T1 > 0 such that

|x1(T1)− x3(T1)| = |x3(T1)− x4(T1)|.
On a time interval (T1, T2), one certainly keeps

{12, 13, 21, 23, 32, 45, 54, 56, 64, 65} ∈ E(t)

and might eventually replace 34 with 31 and/or 43 with
45. In reality, for any of the possible choices, it holds

max{|x1(t)− x3(t)|, |x4(t)− x6(t)|} < |x3(t)− x4(t)|.
Thus, the only admissible choice for (1) is to set {31, 45} ∈
E(t) for t ∈ (T1, T2), hence E(t) is not constant along the
trajectory. Afterwards, the graph is constant for t > T1.
The time evolution of the system is shown in Figure 3.

Remark 3. In both examples above, the Caratheodory
solution is unique and is not always differentiable, thereby
implying that no classical solution exists. Moreover, one
can perturb the given initial data to provide similar
(eventually non-symmetric) examples of initial data for
which a classical solution does not exist. This proves that
existence of classical solution is not satisfied for a open set
of strictly positive measure. Thus, existence of classical
solutions for a.e. initial data is false.

3.1 The interaction graph for κ = 1 on the real line

In this section, we prove the first main result of our article,
i.e. that the interaction graph is constant for Caratheodory
solutions of topological interaction models for κ = 1 in R.
Observe that the result is stated for a given Caratheodory
solution: different solutions starting from the same initial
datum may have different interaction graphs.

Theorem 2. Let x(t) be a Caratheodory solution for (1)
and G(x(t)) the associated graph. If κ = 1 and the state
space for agents is R, then G(x(t)) is constant for t > 0.

Proof. Step 1. We first prove that the ordering in
R is preserved by Caratheodory solutions of (1) with
κ = 1. Since the space is R, one can rearrange indexes
so that xi(0) ≤ xi+1(0) for all i ∈ V \ {N}. Moreover,
rearrangement of indexes can preserve ordering in case of

initial coinciding positions, i.e. if xi(0) = xj(0) with i < j
before rearrangement, we can preserve it.

We now prove that inequalities are preserved along time.
For simplicity of notation, we choose i = 3 and N ≥ 5;
the cases with N ≤ 4 are identical. Consider the function
ϕ(t) := x4(t) − x3(t), that is Lipschitz continuous with
respect to time. From now on, only consider times where
x(t) is differentiable, hence ϕ(t) if differentiable too. We
also drop dependence on time, for simplicity. For times
where ϕ ≥ 0, one has two cases:

• either |x2 − x3| ≤ ϕ and ẋ3 = a(|x2 − x3|)(x2 − x3) ≤ 0;
• or |x2 − x3| ≥ ϕ and ẋ3 = a(ϕ)ϕ.

In both cases, it holds ẋ3 ≤ a(ϕ)ϕ. By symmetry, one also

has ẋ4 ≥ −a(ϕ)ϕ, then ϕ̇ = ẋ4 − ẋ3 ≥ −2a(ϕ)ϕ. Since

solutions of ϕ̇ = −2a(ϕ)ϕ preserve the sign of the initial
datum, then ϕ(0) > 0 implies ϕ(t) > 0, while ϕ(0) = 0
implies ϕ(t) = 0. Then, the order is preserved, particles
cannot merge in finite time and particles with coinciding
initial data keep being coinciding.

Step 2. We now prove the main statement: with no loss
of generality, we choose the index i = 3 and prove that the
unique edge of the form 3j is constant for t > 0. If x3(0) =
x2(0), then by Step 1 it holds x3(t) = x2(t) = x3(0). If
x1(0) < x3(0), then the edge is constantly 32, otherwise it
is constantly 31. Similarly, if x2(0) < x3(0) = x4(0), then
the edge is constantly 34.

Assume then x2(0) < x3(0) < x4(0) from now on. Define
the function f(t) := (x4(t)− x3(t))− (x3(t)− x2(t)), that
is Lipschitz continuous with respect to time, and let t be
a point of differentiability of x(t). We have three cases,
depending on the sign of f(0).

If f(0) > 0, i.e. |x3(0) − x2(0)| < |x4(0) − x3(0)|, then
necessarily ẋ3 = a(|x3 − x2|)(x2 − x3) as soon as f(t) > 0.
To estimate ẋ2, one has:

• either |x1 − x2| ≤ |x2 − x3| and
ẋ2 = −a(|x2−x1|)(x2−x1) ≥ −a(|x3−x2|)(x3−x2);

• or |x2 − x3| ≤ |x1 − x2| and ẋ2 = a(|x3 − x2|)(x3 − x2).

In both cases, it holds

ẋ2 ≥ −a(|x3 − x2|)(x3 − x2).

By using results of Step 1, one also has

ẋ4 ≥ −a(|x4 − x3|)(x4 − x3).

It then holds

ḟ ≥−a(|x4 − x3|)(x4 − x3)− a(|x3 − x2|)(x2 − x3) (3)

−a(|x3 − x2|)(x2 − x3)− a(|x3 − x2|)(x3 − x2)

=− (a(|x4 − x3|)(x4 − x3)− a(|x3 − x2|)(x3 − x2)) .

Introduce the the difference quotient of the function a(r)r,
i.e. the following function of two variables:

ψ(r, h) := 1
h (a(r + h)(r + h)− a(r)r).

Our hypotheses on a(r) imply that a(r)r is differentiable
and increasing, then ψ(r, h) ≥ 0 when restricted to
[0,+∞)× [0,+∞). One can then rewrite (3) as

ḟ(t) ≥ −ψ(x3(t)− x2(t), f(t))f(t),

whose solutions with f(0) > 0 preserve the sign for all
times. This shows that |x3(0) − x2(0)| < |x4(0) − x3(0)|

implies |x3(t) − x2(t)| < |x4(t) − x3(t)|. If x2(0) > x1(0),
this implies that the edge 32 is constant, otherwise x2(0) =
x1(0) implies x2(t) = x1(t) and the edge 31 is constant.
The case f(0) < 0 is similar to the previous case.

We are left with the case f(0) = 0. Due to the study above,
one necessarily has f(t) ≡ 0 on a suitable interval [0, T ],
possibly with T ∈ {0,+∞}, while f(t) is either always
strictly negative or strictly positive in (T,+∞). We now
prove that T = 0, i.e. that f(t) cannot be zero for positive
times. By contradiction, assume that T > 0 and consider
again the function ϕ(t) = x4(t) − x3(t), which is strictly
positive due the hypothesis x4(0) > x3(0) and to Step 1.
Since f(t) ≡ 0 on [0, T ], it also holds x3(t)− x2(t) = ϕ(t).
Again by considering only points of differentiability and
by dropping dependence on time, for each of the agents
x3, x4, x2, we have two possibilities:

• ẋ3 = a(ϕ)ϕ or ẋ3 = −a(ϕ)ϕ;
• ẋ4 = −a(ϕ)ϕ or ẋ4 = a(|x5 − x4|)(x5 − x4) ≥ 0;
• ẋ2 = a(ϕ)ϕ or ẋ2 = a(|x1 − x2|)(x1 − x2) ≤ 0.

Since f(t) ≡ 0, then ḟ = 0, thus ẋ4 + ẋ2 = 2ẋ3. The
possibilities above are then reduced to the following:

• ẋ3 = a(ϕ)ϕ, then ẋ4 = a(|x5 − x4|)(x5 − x4) = a(ϕ)ϕ
and ẋ2 = a(ϕ)ϕ;

• ẋ3 = −a(ϕ)ϕ, then ẋ4 = −a(ϕ)ϕ and
ẋ2 = a(|x1 − x2|)(x1 − x2) = −a(ϕ)ϕ.

By hypotheses on a(r), we have that a(r)r is strictly
increasing, hence injective: then, the first case reads as
x5 − x4 = ϕ, while the second reads as x2 − x1 = ϕ. Since
ϕ is constant on [0, T ], the first case read as ẋ5 = ẋ4, while
the second reads as ẋ1 = ẋ2. In the first case, one cannot
have ẋ5 = a(|x4 −x5|)(x4 −x5) < 0, hence one necessarily
has ẋ5 = a(|x6−x5|)(x6−x5) = a(ϕ)ϕ. This in turn implies
x6 − x5 = ϕ and subsequently ẋi = a(ϕ)ϕ for all i ≥ 2.
This holds also for the agent with highest index i = N ,
but this contradicts the fact that it necessarily holds

ẋN = a(|xN−1 − xN |)(xN−1 − xN ) = −a(ϕ)ϕ < 0.

This implies that there exists no time t ∈ [0, T ] for which
the first case is satisfied, then the second case holds for all
t ∈ [0, T ] for which x(t) is differentiable. But this second
case is similar, as one has ẋi = −a(ϕ)ϕ for all i ≤ 4, which
is in contradiction with the fact that for i = 1 it necessarily
holds ẋ1 = a(|x1 − x2|)(x2 − x1) = a(ϕ)ϕ > 0. �

We just proved that the interaction graph is constant.
Since each component has a globally reachable node, we
can draw the following important consequence.

Theorem 3. (Convergence). Let x(t) be a Caratheodory
solution to (1) and Ḡ = (V, Ē) the associated graph for
t > 0. If κ = 1 and the state space for agents is R, then
x(t) converges to some x⋆. Moreover, it holds x⋆

i = x⋆
j if

and only if there is a path from i to j or from j to i in Ḡ.

A similar reasoning was employed in Ceragioli et al.
(2021b) for a more restrictive definition of solutions. The-
orem 3 was also proved by a Lyapunov argument in Cer-
agioli et al. (2021a).
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4. EXISTENCE OF CARATHEODORY SOLUTIONS

In this section, we prove the second main result of this
article: existence of Caratheodory solutions for topological
interactions with κ = 2 neighbors. The case κ = 1 was
already proved in Ceragioli et al. (2021a). The general case
seems much harder to solve, as we will discuss later.

Theorem 4. Let κ = 2. Then, for any initial condition,
equation (1) admits a Caratheodory solution on [0,+∞).

Proof. We build a Caratheodory solution as follows. For
each initial datum, we define a directed graph G = (V,E)
for which there exists T > 0 and a curve defined on [0, T ]
having G as connectivity graph on (0, T ). For each index
i ∈ V we choose exactly κ indexes, that we denote with
Γ(i), such that ij ∈ E for j ∈ Γ(i). This implies that

ẋi =
∑

j∈Γ(i) a(|xj − xi|)(xj − xi). (4)

for the whole time interval (0, T ). We then need to prove
that the corresponding trajectory (x1(t), . . . , xN (t)) is
indeed a Caratheodory solution for (1).

Remark that one might be tempted to choose Γ(i) to be
equal to Ni(x̄), that is, the set of nearest neighbors choos-
ing the minimal index (in the lexicographic order) in case
of ties. This solution cannot be effective, though, because
problems arise exactly in case of ties. Hence, we will not
choose Γ(i) to be the set of nearest neighbors with minimal
index at the initial time, but instead choose Γ(i) to be the
set of nearest neighbors for all t ∈ (0, T ). This delicate
construction will be achieved by Algorithm 1, which takes
as input an initial configuration x̄ and produces as output
the directed graph G = (V,E), by iteratively adding edges
into E through four Steps. To simplify the exposition, we
do not describe the case of initially coinciding particles:
it can be easily treated by requiring that they keep being
coinciding for t ≥ 0.

We now fix some necessary notation. We denote by #B
the cardinality of the set B. Given κ ≥ 1, we denote by

minκ(B) := min{x ∈ R s.t. #(B ∩ (−∞, x]) ≥ κ},
i.e. the minimal value ensuring that B ∩ (−∞, x] contains
at least κ elements. Similarly, given and indexed set B =
{Bi}i∈I . we denote by

argminκ(B) := {i ∈ I s.t. Bi ≤ mink(B)},
i.e. the set of indexes of elements smaller than minκ(B).
Clearly, argminκ(B) contains at least κ elements. It con-
tains exactly κ elements in several relevant cases: e.g.,
when a single element b ∈ B satisfies b = minκ(B). We
also define “strict” κ-minimum and κ-argmin as follows:

sminκ(B) := max{x ∈ R s.t. #(B ∩ (−∞, x]) ≤ κ}
sargminκ(B) := {i ∈ I s.t. Bi ≤ smink(B)}.

It is clear that sargminκ(B) contains κ elements at most.
Moreover, it contains exactly κ elements when it coincides
with argminκ(B), e.g. in the case discussed above.

We also define the following function:

ψi(k, J) :=
(∑

l∈Γ(k) a(|x̄l − x̄j |)(x̄l − x̄j) (5)

−
∑

l∈J a(|x̄l − x̄i|)(x̄l − x̄i)
)
· (x̄k − x̄i).

It is easy to observe that ψi(k, J) is the derivative of
|xk − xi|2 for t = 0, where neighbors of k are in Γ(k),
while the neighbors of i are in J .

Algorithm 1: Graph construction

Step 1) for i = 1, . . . , N do
Γ(i) ← sargmin2(|x̄j − x̄i|);

Step 2) while There exists i such that #Γ(i) < 2 and all
j ∈ Ai := argmin2(|x̄j − x̄i|) \ Γ(i) satisfy
#Γ(j) = 2 do

if #Γ(i) = 1 then
Choose j∗ ∈ Ai as one element of

argminj∈Ai
ψi(j,Γ(i) ∪ {j});

Γ(i) ← Γ(i) ∪ {j∗};
else

Choose {j∗1 , j∗2} ⊂ Ai as one pair realizing
argmin{j1,j2}⊂Ai

maxl=1,2 ψi(jl, {j1, j2});
Γ(i) ← Γ(i) ∪ {j∗1 , j∗2};

Step 3) if The set B := {i such that #Γ(i) = 1} is
nonempty then

Choose the subset B′ := {i ∈ B such that

argmin2j∈Ai
(|x̄j−x̄i|) = max

k∈B
argmin2j∈Ak

(|x̄j−x̄k|)};

Choose one ordered pair (i, j∗) ∈ B′′ with

B′′ := {(i, j) ∈ B′×{1, . . . , N} with j ∈ Ai \Γ(i)}
that minimizes ψi(j,Γ(i) ∪ {j}) on B′′;

Γ(i) ← Γ(i) ∪ {j∗};
if Γ(j∗) = 1 then

Γ(j∗) ← Γ(j∗) ∪ {i};
Go to Step 2));

Step 4) if There exists i with Γ(i) = ∅ then
For each i, consider the set of pairs

Bi := {argmin{j1,j2}⊂Ai
max
l=1,2

ψi(jl, {j1, j2})}.

if There exist i, j such that {j, k} ∈ Bi and
{i, l} ∈ Bj then

Γ(i) ← {j} and Γ(j) ← {i};
else

if There exist i, j such that there exist
neither {j, k} ∈ Bi nor {i, l} ∈ Bj then

Ai ← Ai \ {j} and Aj ← Aj \ {i};
else

if There exists i, j such that {j, k} ∈ Bi

and minl∈Aj maxr=i,l ψj(r, {i, l}) <
min{l1,l2∈Aj\{i}} ψj(l1, {l1, j2}) when
Γ(i) = {k} then

Γ(i) ← {j};
else

Ai ← Ai \ {j} and Aj ← Aj \ {i};

Go To Step 2));

One can prove that the algorithm terminates. We now
prove that it provides a graph G = (V,E) such that
the solution to (4) starting from x̄ is a Caratheodory
solution to (1) for a small time interval [0, T ]. We prove
the following claim:

Claim A) Let V ∗ := {(i, j, k) with i = 1, . . . , N, j ∈
Γ(i), k ̸∈ Γ(i)}. For each (i, j, k) ∈ V ∗ there exists a time
Tijk > 0 such that for all t ∈ (0, Tijk) it holds

dijk(t) := |xj(t)− xi(t)|2 − |xk(t)− xi(t)|2 < 0.
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4. EXISTENCE OF CARATHEODORY SOLUTIONS

In this section, we prove the second main result of this
article: existence of Caratheodory solutions for topological
interactions with κ = 2 neighbors. The case κ = 1 was
already proved in Ceragioli et al. (2021a). The general case
seems much harder to solve, as we will discuss later.

Theorem 4. Let κ = 2. Then, for any initial condition,
equation (1) admits a Caratheodory solution on [0,+∞).

Proof. We build a Caratheodory solution as follows. For
each initial datum, we define a directed graph G = (V,E)
for which there exists T > 0 and a curve defined on [0, T ]
having G as connectivity graph on (0, T ). For each index
i ∈ V we choose exactly κ indexes, that we denote with
Γ(i), such that ij ∈ E for j ∈ Γ(i). This implies that

ẋi =
∑

j∈Γ(i) a(|xj − xi|)(xj − xi). (4)

for the whole time interval (0, T ). We then need to prove
that the corresponding trajectory (x1(t), . . . , xN (t)) is
indeed a Caratheodory solution for (1).

Remark that one might be tempted to choose Γ(i) to be
equal to Ni(x̄), that is, the set of nearest neighbors choos-
ing the minimal index (in the lexicographic order) in case
of ties. This solution cannot be effective, though, because
problems arise exactly in case of ties. Hence, we will not
choose Γ(i) to be the set of nearest neighbors with minimal
index at the initial time, but instead choose Γ(i) to be the
set of nearest neighbors for all t ∈ (0, T ). This delicate
construction will be achieved by Algorithm 1, which takes
as input an initial configuration x̄ and produces as output
the directed graph G = (V,E), by iteratively adding edges
into E through four Steps. To simplify the exposition, we
do not describe the case of initially coinciding particles:
it can be easily treated by requiring that they keep being
coinciding for t ≥ 0.

We now fix some necessary notation. We denote by #B
the cardinality of the set B. Given κ ≥ 1, we denote by

minκ(B) := min{x ∈ R s.t. #(B ∩ (−∞, x]) ≥ κ},
i.e. the minimal value ensuring that B ∩ (−∞, x] contains
at least κ elements. Similarly, given and indexed set B =
{Bi}i∈I . we denote by

argminκ(B) := {i ∈ I s.t. Bi ≤ mink(B)},
i.e. the set of indexes of elements smaller than minκ(B).
Clearly, argminκ(B) contains at least κ elements. It con-
tains exactly κ elements in several relevant cases: e.g.,
when a single element b ∈ B satisfies b = minκ(B). We
also define “strict” κ-minimum and κ-argmin as follows:

sminκ(B) := max{x ∈ R s.t. #(B ∩ (−∞, x]) ≤ κ}
sargminκ(B) := {i ∈ I s.t. Bi ≤ smink(B)}.

It is clear that sargminκ(B) contains κ elements at most.
Moreover, it contains exactly κ elements when it coincides
with argminκ(B), e.g. in the case discussed above.

We also define the following function:

ψi(k, J) :=
(∑

l∈Γ(k) a(|x̄l − x̄j |)(x̄l − x̄j) (5)

−
∑

l∈J a(|x̄l − x̄i|)(x̄l − x̄i)
)
· (x̄k − x̄i).

It is easy to observe that ψi(k, J) is the derivative of
|xk − xi|2 for t = 0, where neighbors of k are in Γ(k),
while the neighbors of i are in J .

Algorithm 1: Graph construction

Step 1) for i = 1, . . . , N do
Γ(i) ← sargmin2(|x̄j − x̄i|);

Step 2) while There exists i such that #Γ(i) < 2 and all
j ∈ Ai := argmin2(|x̄j − x̄i|) \ Γ(i) satisfy
#Γ(j) = 2 do

if #Γ(i) = 1 then
Choose j∗ ∈ Ai as one element of

argminj∈Ai
ψi(j,Γ(i) ∪ {j});

Γ(i) ← Γ(i) ∪ {j∗};
else

Choose {j∗1 , j∗2} ⊂ Ai as one pair realizing
argmin{j1,j2}⊂Ai

maxl=1,2 ψi(jl, {j1, j2});
Γ(i) ← Γ(i) ∪ {j∗1 , j∗2};

Step 3) if The set B := {i such that #Γ(i) = 1} is
nonempty then

Choose the subset B′ := {i ∈ B such that

argmin2j∈Ai
(|x̄j−x̄i|) = max

k∈B
argmin2j∈Ak

(|x̄j−x̄k|)};

Choose one ordered pair (i, j∗) ∈ B′′ with

B′′ := {(i, j) ∈ B′×{1, . . . , N} with j ∈ Ai \Γ(i)}
that minimizes ψi(j,Γ(i) ∪ {j}) on B′′;

Γ(i) ← Γ(i) ∪ {j∗};
if Γ(j∗) = 1 then

Γ(j∗) ← Γ(j∗) ∪ {i};
Go to Step 2));

Step 4) if There exists i with Γ(i) = ∅ then
For each i, consider the set of pairs

Bi := {argmin{j1,j2}⊂Ai
max
l=1,2

ψi(jl, {j1, j2})}.

if There exist i, j such that {j, k} ∈ Bi and
{i, l} ∈ Bj then

Γ(i) ← {j} and Γ(j) ← {i};
else

if There exist i, j such that there exist
neither {j, k} ∈ Bi nor {i, l} ∈ Bj then

Ai ← Ai \ {j} and Aj ← Aj \ {i};
else

if There exists i, j such that {j, k} ∈ Bi

and minl∈Aj maxr=i,l ψj(r, {i, l}) <
min{l1,l2∈Aj\{i}} ψj(l1, {l1, j2}) when
Γ(i) = {k} then

Γ(i) ← {j};
else

Ai ← Ai \ {j} and Aj ← Aj \ {i};

Go To Step 2));

One can prove that the algorithm terminates. We now
prove that it provides a graph G = (V,E) such that
the solution to (4) starting from x̄ is a Caratheodory
solution to (1) for a small time interval [0, T ]. We prove
the following claim:

Claim A) Let V ∗ := {(i, j, k) with i = 1, . . . , N, j ∈
Γ(i), k ̸∈ Γ(i)}. For each (i, j, k) ∈ V ∗ there exists a time
Tijk > 0 such that for all t ∈ (0, Tijk) it holds

dijk(t) := |xj(t)− xi(t)|2 − |xk(t)− xi(t)|2 < 0.

The claim ensures that j is one among the κ = 2 nearest
neighbors of i for the whole time interval. We prove it in
four steps, corresponding to the Steps of the algorithm.

Step 1) Let (i, j, k) ∈ V ∗ with j ∈ sargmin2(|x̄j − x̄i|).
By Step 1, we set j ∈ Γ(i). By definition, it then holds
dijk(0) < 0. Thus, continuity of dijk(t) ensures the exis-
tence of Tijk > 0 satisfying Claim A. The case of (i, j, k) ∈
V ∗ with j ∈ argmin2(|x̄j − x̄i|) and k ̸∈ argmin2(|x̄k − x̄i|)
is similar and can be treated by continuity as well.

We are now left to the (more complicated) case of ties.
From now on, we assume L := |xj − xi| = |xk − xi| > 0.

Step 2) If for some i, all possible neighbors j ∈ Ai have a
fixed dynamics, then it is sufficient to choose the neighbors
of i as the ones ensuring dijk(t) < 0 for t ∈ (0, Tijk). With
this goal, it is sufficient to recall that ψi(j,Γ(i) ∪ J) −
ψi(k,Γ(i) ∪ J) is the time derivative of dijk for t = 0
when one adds J as new neighbors of i. Thus, the two
possibilities in Cycle 2 (in which one has to choose 1 or
2 neighbors, respectively) correspond to the fact that one

chooses the neighbors ensuring that ḋijk is minimal among

all possible choices. It is easy to observe that ḋijk(0) < 0.

Step 3) is very similar to the previous step. Given i such
that Γ(i) = {l} and an edge ij is added, this means that
the l neighbor was added at Cycle 1, i.e. |xi−xl| < L. We

now prove ḋijk(0) < 0 as follows:

• If #Γ(j) = #Γ(k) = 2, follow the argument of Step 2.
• If #Γ(j) = 2 > #Γ(k) = 1, use the fact that neighbors
of Γ(k) are all at distance smaller or equal than L,
otherwise Γ(k) = 2 due to the choice of the maximal
distance in B′. Then, adding the edge ij decreases
d
dt |xj − xi|2 by a factor a(L)L2, while adding any edge

kr will increase d
dt |xk − xi|2 by a factor that is strictly

smaller than a(L)L2.
• If #Γ(j) = 1, the situation is similar to the previous one.
One adds both edges ij and ji, to decrease |xi −xi|2 by
a factor 2a(L)L2, while any choice for Γ(k) will increase
it by a strictly smaller factor.

Step 4) Observe that the repetition of Steps 2 and 3 forces
all agents to be in the following configuration when the
Step 4 starts: they all satisfy #Γ(i) ∈ {0, 2}, i.e. the case
#Γ(i) = 1 is no more present. In this case, all the different
possibilities either provide links that ensure Claim A, or
remove the links that cannot satisfy it. Then, go back to
Step 2 and repeat the algorithm: this proves Claim A.

We are now left to prove that there exists a Caratheodory
solution to (1). Using Claim A, define T := minijk Tijk >
0. The claim, together with the discussion about coinciding
agents, ensures that the solution to (4) is a Caratheodory
solution to (1) on [0, T ]. By using the same algorithm
starting from x(T ) and one can build a solution on some
[T, T1] with T1 > T , then on [T1, T2] and so on. By
recalling compactness, due to Proposition 1, one has that
the trajectory can be extended to [0,+∞). �

Remark 4. (Larger κ). An algorithm to construct Cara-
theodory solutions for κ > 2 seems much more complicated
to devise, for two reasons. First, the combinatorics of cases
seems to increase, as one can observe by comparing the

algorithm for κ = 2 here with the one for κ = 1 given
in Ceragioli et al. (2021a). Second, in case of ties, when a
first neighbor j ∈ Γ(i) is found, adding one more neighbor
k (as required by κ = 2) does not drastically change
the dynamics of i, since j and k have the same weight.
Instead, for κ > 2, the influence of the first neighbor can
be overcome by the κ− 1 new neighbors.

5. CONCLUSIONS AND FUTURE DIRECTIONS

This paper has contributed some additional results to the
study of continuous-time opinion dynamics with topolog-
ical interactions. Building upon and extending the recent
contributions by Ceragioli et al. (2021a,b), we have pro-
duced results about the existence of Caratheodory solu-
tions, the properties of their associated graph of inter-
agent interactions, and their convergence to equilibria. The
most immediate open problem is proving the existence of
Caratheodory solutions when the number of neighbors κ is
greater than 2. Next, one should study their convergence
properties: so far, convergence to equilibria has only been
proved for κ = 1 by Ceragioli et al. (2021a).
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