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SOME RESULTS ON POHLKE’S TYPE ELLIPSES

RENATO MANFRIN

Abstract. We give here formulae for determining the Pohlke’s ellipse and
the secondary Pohlke’s ellipse of a triad of segments in a plane. Then we
apply these results to find an explicit expression of the secondary Pohlke’s
projection introduced in [6].

1. Introduction

Let OP1, OP2, OP3 be three non-parallel segments in a plane ω and let
EP1,P2 , EP2,P3 and EP3,P1 be the concentric ellipses defined by the three pairs
of conjugate semi-diameters (OP1, OP2), (OP2, OP3) and (OP3, OP1) re-
spectively. It was proved in [8] and then in [6] that there are at most two
distinct ellipses with center O circumscribing EP1,P2 , EP2,P3 , EP3,P1 .
The first, which we denote by EP, is the Pohlke’s ellipse (see also [2], [3]). It
is determined by the requirement that there exists a sphere S with center
O, three points Q1, Q2, Q3 ∈ S and a parallel projection Π : E3 → ω (i.e., a
Pohlke’s projection) such that:

Π(OQi) = OPi (1 ≤ i ≤ 3),(1)

OQ1 ⊥ OQ2, OQ2 ⊥ OQ3, OQ3 ⊥ OQ1.(2)

With S, Π as above, the Pohlke’s ellipse EP for OP1, OP2, OP3 is the contour
of the projection onto ω of the sphere S, i.e.

(3) EP
def
= Π(S ∩ π),

where π the plane through O and perpendicular to the direction of Π. Exis-
tence and uniqueness of such an ellipse are guaranteed by Pohlke’s theorem
of oblique axonometry [7]. See [1], [4] for an analytic proof. The other,
which we denote by ES, is the secondary Pohlke’s ellipse:

Definition 1.1. A secondary Pohlke’s ellipse for the triad of segments
OP1, OP2, OP3 is an ellipse ES 6= EP, centered at O, which circumscribes
the three ellipses EP1,P2, EP2,P3, EP3,P1.

By the results of [6] (Theorem 2.1, (a)⇔ (b)) a secondary Pohlke’s ellipse

ES is determined by the requirement that there exists a sphere S̃ with center

O, three points R1, R2, R3 ∈ S̃ and a parallel projection Π̃ : E3 → ω (i.e., a
secondary Pohlke’s projection) such that:
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Π̃(ORi) = OPi (1 ≤ i ≤ 3),(4)

OR1 ⊥ OR2 , OR2 ⊥ OR3 and OR3 ⊥ OR′1,(5)

Ri 6∈ π̃ (i.e., Ri 6= R′i) (1 ≤ i ≤ 3)(6)

where π̃ is the plane through O and perpendicular to the direction of Π̃;

the point R′i is symmetric to Ri with respect to π̃. With S̃, Π̃ and π̃ as
above, we have

(7) ES = Π̃(S̃ ∩ π̃).

See also [8] for an alternative approach.
Unlike the Pohlke’s ellipse EP, which exists even if two of the segments

OP1, OP2, OP3 are parallel (see Section 2), the secondary Pohlke’s ellipse ES
does not always exist. More precisely, from [6] (Theorem 2.1, equivalence
(a), (b)⇔ (c)) we also know that:

Theorem 1.1. Suppose the segments OP1, OP2, OP3 are non-parallel. Then
there exists a secondary Pohlke’s ellipse ES if and only if

(8) a
−−→
OP1 + b

−−→
OP2 + c

−−→
OP3 = 0,

with a, b, c 6= 0 such that

(9) G(a, b, c)
def
= a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2 > 0.

Further, if ES exists then ES is unique.

The preceding definitions of EP and ES are not invariant under affine
transformations of the euclidean space E3 due to the requirement that S,

S̃ be spheres and also for the orthogonality conditions in (2) and (5), (6).
However, we show here that under affine transformation of the plane ω the
Pohlke’s ellipse of the segments OP1, OP2, OP3 transforms into the Pohlke’s
ellipse of the transformed segments and the same is true for the secondary
Pohlke’s ellipse when it exists, i.e., if (8)-(9) holds.

Notation 1.1. For greater clarity we will often write

(10) EP(O,P1, P2, P3) and ES(O,P1, P2, P3),

instead of EP and ES, to make explicit the triad of segments from which a
given Pohlke’s ellipse or a given secondary Pohlke’s ellipse refers.

In this article we will demonstrate a number of facts about Pohlke’s ellipses
and secondary Pohlke’s ellipses which we can summarize as follows:

• In Section 3, assuming OP1, OP2, OP3 are not all parallel, we deter-
mine a pair of conjugate semi-diameters of the Pohlke’s ellipse EP
and then we apply this result to prove that if Ψ : ω → ω is any
affine transformation then

(11) Ψ(EP(O,P1, P2, P3)) = EP(Ψ(O),Ψ(P1),Ψ(P2),Ψ(P3)).

• In Section 4, assuming OP1, OP2, OP3 are non-parallel and (8)-(9)
holds, we demonstrate similar results for the secondary Pohlke’s el-
lipse ES. In particular, noting that ES(Ψ(O),Ψ(P1),Ψ(P2),Ψ(P3))
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exists because condition (8)-(9) is invariant under affine transforma-
tions of the plane ω, we prove that

(12) Ψ(ES(O,P1, P2, P3)) = ES(Ψ(O),Ψ(P1),Ψ(P2),Ψ(P3)).

Using (11) and (12) we also show that

(13) area(EP) < area(ES),
because it holds if two of the segments OP1, OP2, OP3 are perpen-
dicular and equal.

• In Section 5, assuming OP1, OP2, OP3 are non-parallel and (8)-(9)
holds, we show that

(14) ES(O,P1, P2, P3) = EP(O,P1, P2, X3),

where the point X3 is such that

(15) ±
−−→
OX3 =

a(a2 − b2 − c2)
c
√
G

−−→
OP1 +

b(a2 − b2 + c2)

c
√
G

−−→
OP2 ,

with G = G(a, b, c) the quantity defined by (9).
Similarly we can prove that ES(O,P1, P2, P3) = EP(O,X1, P2, P3) =
EP(O,P1, X2, P3) by appropriately defining X1, X2 respectively.

• In Section 5.1, applying (14) and the formulae of [4] for Pohlke’s
projection, we finally give a procedure to explicitly determine the

secondary Pohlke’s projection Π̃ and the points R1, R2, R3 such that
conditions (4), (5), (6) hold.

2. Preliminaries

In this section we suppose OP1, OP2, OP3 are not all parallel. 1 To deter-
mine the Pohlke’s ellipse EP we resume some of the arguments introduced in
[4], [5]. Namely, we adopt a system of coordinate axes x, y, z such that ω
is the plane z = 0,

(16) O =

 0
0
0

, P1 =

 x1
y1
0

, P2 =

 x2
y2
0

, P3 =

 x3
y3
0


and we also consider the matrix

(17) A =

 x1 x2 x3
y1 y2 y3
0 0 0

 =

 A1

A2

0

.
The rows A1, A2 are linearly independent (i.e., car(A) = 2) because OP1,
OP2, OP3 are not all parallel. Hence can we define:

(18) γ
def
= arccos

(
A1 ·A2

‖A1‖ ‖A2‖

)
, λ

def
=
‖A1‖
‖A2‖

.

1 If two of the segments OP1, OP2, OP3 are parallel (or if one of them vanishes) we
can still say that EP circumscribes EP1,P2 , EP2,P3 and EP3,P1 but we need to introduce
degenerate ellipses as in [1, pp. 372-373]. For instance, if OP1 ‖ OP2 then we set EP1,P2 =
MN , where MN is the segment parallel to OP1, OP2 such that O = (M + N)/2 and
|ON |2 = |OP1|2 + |OP2|2. In this case we say that EP circumscribes EP1,P2 if M,N ∈ EP.
We also say that EP is tangent to EP1,P2 at M,N . See the Definitions 3.1, 3.3 of [6].
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Noting that 0 < γ < π and λ > 0, we can also introduce the quantities:

(19) η
def
=

λ2 + 1 +
√

(λ2 + 1)2 − 4λ2 sin2γ

2λ2 sin2γ

and then 2

(20) (α, β)
def
= ±

(√
η λ2 − 1 , sgn(cos γ)

√
η − 1

)
,

where

(21) sgn(t)
def
=

{
1 if t ≥ 0

−1 if t < 0
.

Finally, we define the parallel projection Π : E3 → ω as

(22) Π

 x
y
z

 def
=

 x+ αz
y + βz

0

.
The Pohlke’s ellipse EP of OP1, OP2, OP3 is then the contour of the projec-
tion into the plane ω of the sphere S with center O and radius

(23) ρ
def
=
‖A1‖
λ
√
η

=
‖A2‖√
η
.

Namely, EP = Π(S ∩ π) where π is the plane π : αx+ βy − z = 0.

Remark 2.1. It is worthwhile noting that EP uniquely determines the sphere
S centered at O, because the radius of S must be equal to the semi-minor
axis of EP. Furthermore, the Pohlke’s projection Π : E3 → ω is determined
up to symmetry with respect to the plane ω. Namely, if the semi-axes of EP
are given by two perpendicular segments OV,OW ⊂ ω such that

(24) 0 < |OV | ≤ |OW | and W =

 p
q
0

,
then the sphere S has radius ρ = |OV | and the direction of projection is
given by the column vector

(25) −→n =

 δp
δq
±1

 with δ =

√
p2 + q2 − ρ2
ρ2(p2 + q2)

.

If δ = 0 then EP is a circle and we have only the orthogonal projection.
Conversely, if δ > 0 the two possible signs of the last component of −→n
correspond to two distinct projections which are symmetric with respect to

the plane ω. Indeed, if Π : E3 → ω is defined by

(26) Π(P ) = Π(P ) where P is symmetric to P with respect to ω,

2 We note that η, ηλ2 ≥ 1. Indeed from (19) we easily have:

η(λ, γ) ≥ η(γ,
π

2
) =

λ2 + 1 + |λ2 − 1|
2λ2

=

{
1/λ2 if 0 < λ ≤ 1

1 if λ ≥ 1
.
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then (1) and (2) are verified with Π instead of Π and Q1, Q2, Q3 instead
of Q1, Q2, Q3 respectively. Given two projections Π1,Π2 : E3 → ω , we will
later write that

(27) Π1 ∼ Π2 ⇔ Π1 = Π2 or Π1 = Π2 .

The same considerations apply to the secondary Pohlke’s ellipse ES (and to

the corresponding sphere S̃ and projection Π̃) when (8)-(9) holds. 2

Remark 2.2. Looking at (19) - (22), it is worth noting that the Pohlke’s
projection Π depends only on the quantities γ, λ which we have defined in
(18). Taking into account (23), it is also immediate that:

EP remains unchanged if ‖A1‖, ‖A2‖ and A1 ·A2 do not vary.

Using (25) and the expressions (28) of the lengths of the semi-axes of EP, it
is possible to prove that the converse of this last statement is also true. 2

3. The Pohlke’s ellipse EP
As in the previous section, we suppose that OP1, OP2, OP3 are not all

parallel and we use a system of coordinate axes x, y, z such that ω is the
plane z = 0 and (16) holds.

Lemma 3.1. The lengths σ− , σ+ of the semi-axes of the Pohlke’s ellipse
EP are given by

(28) (σ±)2 =
‖A1‖2 + ‖A2‖2 ±

√(
‖A1‖2 + ‖A2‖2

)2 − 4‖A1 ∧A2‖2

2
.

Proof. Since EP = Π(S ∩ π), it is clear that σ− = ρ where ρ is the radius

of S given by (23). From (22) we can also see that σ+ = ρ
√

1 + α2 + β2

because the direction of projection is given by the column vector

(29) −→u =

 −α−β
1

.
Taking account (19) and (23), we have

(30) σ2− =
‖A2‖2

η
= ‖A2‖2

λ2 + 1−
√

(λ2 + 1)2 − 4λ2 sin2γ

2
.

While, by (19), (20) and (23) we obtain

(31)

σ2+ = ρ2(1 + α2 + β2)

=
‖A2‖2

η

(
ηλ2 + η − 1

)
= ‖A2‖2

(
λ2 + 1− η−1

)
= ‖A2‖2

λ2 + 1 +
√

(λ2 + 1)2 − 4λ2 sin2γ

2
.

Using the definitions (18) of γ and λ and noting that

(32) ‖A1‖ ‖A2‖ sin γ = ‖A1 ∧A2‖,
we obtain (28). 2
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Remark 3.1. σ− , σ+ are also the lengths of the semi-axes of the ellipse
E defined by the pair of conjugate semi-diameters (OA1, OA2).

3 In fact,
by Apollonius’s theorems on conjugate diameters, the lengths a, b of these
semi-axes satisfy the system

(33) a2 + b2 = ‖A1‖2 + ‖A2‖2, ab = ‖A1 ∧A2‖.

Thus we immediately find

(34) a2, b2 =
‖A1‖2 + ‖A2‖2 ±

√(
‖A1‖2 + ‖A2‖2

)2 − 4‖A1 ∧A2‖2

2
,

i.e., formula (28). 2

Remark 3.2. Noting (17), from (28) we get

(35) σ2− + σ2+ = ‖A1‖2 + ‖A2‖2 = |OP1|2 + |OP2|2 + |OP3|2.

See also [2, Main Theorem 3.1] for an alternative proof of (35). 2

Lemma 3.2. If one of the segments OP1, OP2, OP3 vanishes then EP is the
ellipse determined by the pair of conjugate semi-diameters given by the other
two segments.

Proof. Suppose OP3 vanishes. Then we must prove that EP = EP1,P2 .
Namely, the Pohlke’s ellipse EP is determined by the pair of conjugate semi-
diameters (OP1, OP2). We can argue in various ways:

• Since P3 = O, in (1) the direction of the projection Π is given by
the segments OQ3. By the orthogonality conditions (2) this means
that Q1, Q2 ∈ π. Hence, it follows that

(36) EP1,P2 = Π(S ∩ π) = EP .

• Since EP and EP1,P2 are concentric and tangent at some point P ,
there exists P ′, P ′′ 6= O, with OP ′ ‖ OP ′′ and OP ′ ⊃ OP ′′, such
that EP and EP1,P2 are determined by the pairs of conjugate semi-
diameters (OP,OP ′) and (OP,OP ′′) respectively. By Apollonius’s
theorem on conjugate semi-diameters and Remark 3.2 we have

(37) |OP |2 + |OP ′|2 = |OP1|2 + |OP2|2 = |OP |2 + |OP ′′|2.

This gives |OP ′| = |OP ′′| and we deduce that EP = EP1,P2 because
they are determined by the same pair of conjugate semi-diameters.

• Lemma 3.2 is immediate if we also consider the degenerate ellipses. 1

Indeed, if OP3 = O then EP1,P3 = EP1,O = P1P
′
1 and EP2,P3 =

EP2,O = P2P
′
2 , where the points P ′1, P

′
2 are symmetric to P1, P2 re-

spectively, with respect to O. It follows that P1, P2 ∈ Ep and that the
ellipses EP and EP1,P2 are tangent at P1 and P2. Hence EP = EP1,P2 .
See also [6, Section 3].

Having proved Lemma 3.2, we now suppose that the segments OP1, OP2 ,
OP3 do not vanish. We begin with a special case:

3 Here, with a slight abuse of notation, we use A1, A2 to indicate two points with the
same coordinates of the rows A1, A2 of the matrix A defined in (17).
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Lemma 3.3. Let us suppose that

(38) U1 =

 1
0
0

, U2 =

 0
1
0

, U3 =

 h
k
0

,
with h, k not both zero (i.e., U3 6= O). Then the semi-axes of the Pohlke’s
ellipse EP(O,U1, U2, U3) are the segments OΣ− and OΣ+ with

(39) Σ− =
±1√
h2 + k2

 k
−h
0

, Σ+ = ±
√

1 + h2 + k2

h2 + k2

 h
k
0

.
Proof. According to (16), (17) we set

(40) A =

 1 0 h
0 1 k
0 0 0


and then we follow the scheme from (18) to (23). We have

(41) cos γ =
hk√

1 + h2
√

1 + k2
, λ =

√
1 + h2√
1 + k2

.

From this we get η = 1 + k2 , ρ = ‖A2‖ η−1/2 = 1 and

(42) (α, β) = ±
(
|h|, sgn(hk)|k|

)
= ±(h, k).

It follows that the lengths of the semi-axes are

(43) σ− = 1 and σ+ =
√

1 + h2 + k2 .

Moreover, the direction of projection onto the image plane ω is given by the

nonzero vector −→v =

 −h−k
1

 or

 h
k
1

. This means that

(44) OΣ− ‖

 h
−k
0

, OΣ+ ‖

 h
k
0


and then we can easily derive the expressions (39) for Σ− and Σ+ . 2

Remark 3.3. It is easy to find the Pohlke’s projection corresponding to U1,
U2, U3 directly. Indeed, in view of (38), EU1,U2 is a circle with center O and
radius ρ = 1. Hence, EP(O,U1, U2, U3) must have semi-minor axis σ− = 1.
This means that S has radius ρ = 1 and that the conditions (1), (2) are
satisfied (with Pi = Ui , 1 ≤ i ≤ 3) taking Q1 = U1, Q2 = U2,

(45) Q3 = ±

 0
0
1


and the direction of the projection Π parallel to the segment Q3U3, i.e., the
vector −→v above. See [6, Section 4] for more details. 2

We are now in position to obtain the expressions of the conjugate semi-
diameters of EP in the general case:
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Lemma 3.4. Suppose OP1 ∦ OP2 and

(46)
−−→
OP3 = h

−−→
OP1 + k

−−→
OP2 ,

with h, k not both zero (i.e., OP3 6= O). Then the segments OV,OW with

(47)

−−→
OV = ±k

−−→
OP1 − h

−−→
OP2√

h2 + k2
and

−−→
OW = ±

√
1 + h2 + k2

h2 + k2

(
h
−−→
OP1 + k

−−→
OP2

)
are conjugate semi-diameters of the Pohlke’s ellipse EP.

Proof. Noting that OV ∦ OW , it is enough to show that EP(O,P1, P2, P3)
coincides with the Pohlke’s ellipse EP(O, V,W,O), where the third segment
vanishes. Indeed, by Lemma 3.2, OV and OW are conjugate semi-diameters
of EP(O, V,W,O). To prove this fact, we consider the matrix A given by
the coordinates of the points V,W and O. Namely, we set

(48) A =


1√

h2+k2
(kx1 − hx2)

√
1+h2+k2

h2+k2
(hx1 + kx2) 0

1√
h2+k2

(ky1 − hy2)
√

1+h2+k2

h2+k2
(hy1 + ky2) 0

0 0 0


where, for simplicity, in (47) we always choose the sign ” + ”. Then we
evaluate the norms and the scalar product of the rows A1 , A2 of A. By (46)
we have x3 = hx1 + kx2 and y3 = hy1 + ky2 . Thus, we obtain:

(49)

‖A1‖2 =
(kx1 − hx2)2

h2 + k2
+

1 + h2 + k2

h2 + k2
(hx1 + kx2)

2

=
(hx1 + kx2)

2 + (kx1 − hx2)2

h2 + k2
+ (hx1 + kx2)

2

= x21 + x22 + x23 = ‖A1‖2,

and in the same way we can show that ‖A2‖2 = ‖A2‖2.
Further, we consider the scalar product A1 · A2. We have:

A1 ·A2 =
(kx1 − hx2)(ky1 − hy2)

h2 + k2
+

1 + h2 + k2

h2 + k2
(hx1 + kx2)(hy1 + ky2)

=
(hx1 + kx2)(hy1 + ky2) + (kx1 − hx2)(ky1 − hy2)

h2 + k2

+ (hx1 + kx2)(hy1 + ky2)

= x1y1 + x2y2 + x3y3 = A1 ·A2.

In conclusion, we find that

(50) ‖A1‖ = ‖A1‖, ‖A2‖ = ‖A2‖ and A1 ·A2 = A1 ·A2 .

By Remark 2.2, this means that EP(O, V,W,O) = EP(OP1, P2, P3). 2

Summing up from Lemmas 3.2, 3.3 and 3.4, we get:
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Theorem 3.1. Let us suppose that OP1 ∦ OP2. If OP3 = O then the
segments OP1, OP2 are conjugate semi-diameters of the Pohlke’s ellipse EP.
Conversely, if OP3 6= O then a pair of conjugate semi-diameters is given by
the segments OV,OW with

(51)
−−→
OV = ± k

−−→
OP1 − h

−−→
OP2√

h2 + k2
and

−−→
OW = ±

√
1 + h2 + k2

h2 + k2
−−→
OP3,

where the coefficients h, k are such that

(52)
−−→
OP3 = h

−−→
OP1 + k

−−→
OP2 .

With U1, U2, U3 as in (38) we also have:

Lemma 3.5. Let Φ : ω → ω be the an affine transformation and let us
suppose that

(53) OP1 = Φ(OU1), OP2 = Φ(OU2), OP3 = Φ(OU3).

Then Φ(EP(O,U1, U2, U3)) = EP(O,P1, P2, P3).

Proof. From (53) it is clear that OU1 ∦ OU2 ⇒ OP1 ∦ OP2 and that

(54)
−−→
OU3 = h

−−→
OU1 + k

−−→
OU2 ⇒

−−→
OP3 = h

−−→
OP1 + k

−−→
OP2 .

If U3 = O then P3 = O and by the first part of Theorem 3.1, we know that

EP(O,U1, U2, O) and EP(O,P1, P2, O)

are determined by the pairs of conjugate semi-diameters (OU1, OU2) and
(OP1, OP2) respectively. Since OP1 = Φ(OU1) and OP2 = Φ(OU2) it follows
that

(55) Φ(EP(O,U1, U2, O)) = EP(O,P1, P2, O).

Conversely, by the second part of Theorem 3.1, if U3 6= O then the ellipses
EP(O,U1, U2, U3) and EP(O,P1, P2, P3) are determined by the pairs of con-
jugate semi-diameters (OΣ−, OΣ+) (given by (39)) and (OV,OW ) respec-
tively. Since

(56) Φ(
−−−→
OΣ−) = ±

−−→
OV and Φ(

−−−→
OΣ+) = ±

−−→
OW,

we come to the same conclusion. 2

More generally, applying Lemma 3.5, we can easily prove the following:

Theorem 3.2. Let Ψ : ω → ω be any affine transformation. Suppose the
segments OP1, OP2, OP3 are not all parallel and let EP be the corresponding
Pohlke’s ellipse. Then Ψ(EP) is the Pohlke’s ellipse corresponding to the triad
of segments Ψ(OP1), Ψ(OP2), Ψ(OP3).

Remark 3.4. Suppose OP1,OP2,OP3 are not all parallel and do not vanish.
Let Tij (i 6= j) be a point of contact of EP(O,P1, P2, P3) with EPi,Pj . Let tij
be the common tangent line at Tij. Then we can easily show that

(57) tij ‖ OPk (k 6= i, j).

Indeed, by Lemma 3.3, if OPi ∦ OPj it is sufficient to observe that the state-
ment is true for the ellipses EP(O,U1, U2, U3) and EU1,U2. Conversely, if
OPi ‖ OPj, taking h 6= 0 and k = 0 in (38), we note that the conclusion
is true for EP(O,U1, U2, U3) and the degenerate ellipses EU1,U3, with U3 6= O
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and OU1 ‖ OU3. 1 This result was first derived in [3, Theorem 2] through
synthetic methods. 2

4. The secondary Pohlke’s ellipse ES
In this section we suppose the segments OP1, OP2, OP3 are non-parallel

(i.e., OPi ∦ OPj if i 6= j) and

(58)
−−→
OP3 = h

−−→
OP1 + k

−−→
OP2

with h, k 6= 0 such that

(59) g(h, k)
def
= h4 + k4 − 2h2k2 − 2h2 − 2k2 + 1 > 0.

By Theorem 1.1 there exists a unique secondary Pohlke’s ellipse ES . 4

As in the previous section we use a system of coordinate axes x, y, z such
that ω is the plane z = 0 and (16) holds. Also we first consider the triad of
segments OU1, OU2, OU3 where

(60) U1 =

 1
0
0

, U2 =

 0
1
0

 and U3 =

 h
k
0

 with h, k 6= 0

as above. Then, since OU1, OU2, OU3 are non-parallel and

(61)
−−→
OU3 = h

−−→
OU1 + k

−−→
OU2,

the secondary Pohlke’s ellipse ES(O,U1, U2, U3) exists and it is unique. More
precisely, from [6, Section 4], we know that the conditions (4), (5) and (6)

(with Pi = Ui , for 1 ≤ i ≤ 3) are verified by taking: S̃ the sphere with
center O and radius ρ = 1, the points

(62) R1 = U1, R2 = U2 and R3 =
1

h2 − k2 + 1

 2h
0

±
√
g(h, k)

,
where g(h, k) is the function defined in (59). 5 See formula (90) of [6]. This

means that the direction of the projection Π̃ is given by the vector
−−−→
R3U3 .

From these facts it follows that:

Lemma 4.1. Suppose (59), (60) hold. Then the semi-axes of the secondary

Pohlke’s ellipse ES(O,U1, U2, U3) are represented by the segments OΣ̃− and

OΣ̃+ with

(63) Σ̃− =
±1√

H2 +K2

 K
−H

0

, Σ̃+ = ±

√
g +H2 +K2

g(H2 +K2)

 H
K
0


4 Condition (58)-(59) is clearly equivalent to (8)-(9). But (58)-(59) allows us to obtain

slight simpler expressions.
5 Note that condition (59) ⇒ h2−k2 6= ±1. In fact, since g(h, k) = (h2−k2)2−2h2−

2k2 + 1, we get

h2 − k2 = ±1 ⇒ g(h, k) = 2(1− h2 − k2) =

{
− 4h2 if h2 − k2 = −1

− 4k2 if h2 − k2 = 1
.
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where g = g(h, k) and

(64) H
def
= h(h2 − k2 − 1), K

def
= k(h2 − k2 + 1).

Proof. From (62) we have

(65)
−−−→
R3U3 =

1

h2 − k2 + 1

 h(h2 − k2 − 1)
k(h2 − k2 + 1)

∓
√
g(h, k)

.
Thus multiplying the right hand side of (65) by the factor h2−k2+1√

g(h,k)
we see

that the direction of projection is given by the vector

(66) −→w =

 −H/√g−K/√g
1

 or

 H/
√
g

K/
√
g

1

,
where the terms H,K are defined as in (64). Furthermore H,K 6= 0 because
h, k 6= 0 and condition (59) holds. 5 Then, taking into account that the

sphere S̃ has center O and radius ρ = 1 we easily get (63). 2

Corollary 4.1. Suppose (59), (60) hold. Then

(67) area
(
EP(O,U1, U2, U3)

)
< area

(
ES(O,U1, U2, U3)

)
.

Proof. From the expressions (39) and (63) we have |OΣ−| = |OΣ̃−| = 1.

Thus it is enough to prove the inequality |OΣ+|2 < |OΣ̃+|2, that is

(68) 1 + h2 + k2 <
g +H2 +K2

g
.

Since we know that g > 0, (68) is equivalent to (h2 + k2) g < H2 + K2.
Introducing the expressions (59) and (64), with elementary calculations the
last inequality reduces to

(69) 0 < h2k2,

which is clearly verified because we are assuming h, k 6= 0. 2

We can now give the expressions of a pair of conjugate semi-diameters of
the secondary Pohlke’s ellipse ES(O,P1, P2, P3) . Indeed, with U1, U2, U3 as
in (60), we have:

Lemma 4.2. Suppose the segments OP1, OP2, OP3 are non-parallel and
condition (58)-(59) (or (8)-(9)) holds. Let Φ : ω → ω be the affine trans-
formation such that OP1 = Φ(OU1), OP2 = Φ(OU2). Then

(70) Φ(ES(O,U1, U2, U3)) = ES(O,P1, P2, P3).

In particular the segments OṼ and OW̃, with

(71)

−−→
OṼ = ±K

−−→
OP1 −H

−−→
OP2√

H2 +K2
,

−−→
OW̃ = ±

√
g +H2 +K2

g(H2 +K2)

(
H
−−→
OP1 +K

−−→
OP2

)
,

are conjugate semi-diameters of ES(O,P1, P2, P3).
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Proof. In view of Pohlke’s theorem and Theorem 1.1, there are exactly
two distinct ellipses with center O and circumscribing EP1,P2 , EP2,P3 , EP3,P1 .
Namely, the Pohlke’s ellipse EP(O,P1, P2, P3) and the secondary Pohlke’s
ellipse ES(O,P1, P2, P3). Noting that Φ(OU3) = OP3, we have

Φ(EU1,U2) = EP1,P2 , Φ(EU2,U3) = EP2,P3 , Φ(EU3,U1) = EP3,P1 .(72)

Since the ellipse ES(O,U1, U2, U3) circumscribes EU1,U2 , EU2,U3 and EU3,U1 ,
we deduce that

(73) Φ(ES(O,U1, U2, U3)) circumscribes EP1,P2 , EP2,P3 , EP3,P1 .

By Lemma 3.5 we know that Φ(EP(O,U1, U2, U3)) = EP(O,P1, P2, P3), thus
we must conclude that

(74) Φ(ES(O,U1, U2, U3)) = ES(O,P1, P2, P3)

because ES(O,U1, U2, U3) 6= EP(O,U1, U2, U3).

Finally, taking account Lemma 4.1, we see that the segments Φ(OΣ̃−) and

Φ(OΣ̃+) are conjugate semi-diameters of Φ(ES(O,U1, U2, U3)), hence the

segments OṼ ,OW̃ given by (71) are conjugate semi-diameters of the sec-
ondary Pohlke’s ellipse ES(O,P1, P2, P3). 2

From Corollary 4.1 and Lemma 4.2 it is now clear that:

Corollary 4.2. Suppose the segments OP1, OP2, OP3 are non-parallel and
condition (58)-(59) (i.e., (8)-(9)) holds. Then

(75) area
(
EP(O,P1, P2, P3)

)
< area

(
ES(O,P1, P2, P3)

)
.

More generally, if Ψ : ω → ω is any affine transformation of the plane ω,
applying the previous results we can easily prove the following:

Theorem 4.1. Suppose the segments OP1, OP2, OP3 are non-parallel and
condition (8)-(9) holds. Let ES be the secondary Pohlke’s ellipse of the triad
OP1,OP2,OP3. Then Ψ(ES) is the secondary Pohlke’s ellipse of the triad of
segments Ψ(OP1), Ψ(OP2), Ψ(OP3).

5. A determination of the secondary Pohlke’s projection

In this section we give formulae for determining the secondary Pohlke’s
projection of a triad of non-parallel segments OP1, OP2, OP3 satisfying the

condition (8)-(9). That is a parallel projection Π̃ : E3 → ω, a sphere S̃ with

center O and three points R1, R2, R3 ∈ S̃ such that (4), (5), (6) hold.

We already know that S̃ is unique, Π̃ is unique up to symmetry with
respect to ω, and that the set {R1, R2, R3} is determined up to symmetry
with respect to ω and up to symmetry with respect to a plane π̃ through O
and perpendicular to the direction of projection. See Remark 2.1 and [6].

To begin with, we note the following:

Claim 5.1. Let Π̃ : E3 → ω be a secondary Pohlke’s projection for OP1,
OP2,OP3 and suppose the nonzero vector −→w represents the direction of this
projection. Then the following hold:

(a) ORi, OR
′
i 6⊥
−→w (1 ≤ i ≤ 3).
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(b) If the vector −→w is known, then the points R1, R2, R3, R
′
1, R

′
2, R

′
3 can

be recursively computed from any of them. For example, if R3 is
given then we immediately have:

(76)
−−→
OR2 =

−−→
OP2 −

−−→
OR3 ·

−−→
OP2

−−→
OR3 · −→w

−→w ,
−−−→
OR′1 =

−−→
OP1 −

−−→
OR3 ·

−−→
OP1

−−→
OR3 · −→w

−→w .

Proof. (a) It follows from condition (6). Indeed, if ORi ⊥ −→w , or if OR′i ⊥−→w , then Ri = R′i ∈ π̃ where π̃ is the plane through O and perpendicular
to −→w . Thus (6) fails.

(b) By condition (4) we have Π̃(R2) = P2, thus
−−→
OR2 =

−−→
OP2 + t−→w for some

t ∈ R . By (5) we also know that OR2 ⊥ OR3 . So, taking account that
−−→
OR3 · −→w 6= 0, we obtain

(77) t = −
−−→
OR3 ·

−−→
OP2

−−→
OR3 · −→w

.

This gives the first equality of (76). Noting that Π̃(R′1) = P1 and OR3 ⊥
OR′1, in the same way we can derive the second equality. To conclude it is
enough to consider also the points R′2 andR′3 , because from condition (5)
we get a cyclic relation of orthogonality:

(78)
OR1 ⊥ OR2, OR2 ⊥ OR3, OR3 ⊥ OR′1,

OR′1 ⊥ OR′2, OR′2 ⊥ OR′3 , OR′3 ⊥ OR1.

So we can start from any point of the set {R1, R2, R3, R
′
1, R

′
2, R

′
3}. 2

Next, suppose that the segments OP1, OP2, OP3 are non-parallel and
that the condition (58)-(59) (i.e., (8)-(9)) is true. By Theorem 2.1 of [6]

there exist a sphere S̃ with center O, three point R1, R2, R3 ∈ S̃ and a

parallel projection Π̃ : E3 → ω such that the conditions (4), (5), (6) hold. To

determine R1, R2, R3 and Π̃, we begin by observing that setting

(79)
−−→
OX3 =

H
√
g

−−→
OP1 +

K
√
g

−−→
OP2 ,

we have

(80) ES(O,P1, P2, P3) = EP(O,P1, P2, X3 ).

Indeed, by Lemma 3.4 the segments OV̂ and OŴ , with

−−→
OV̂ = ±

K√
g

−−→
OP1 − H√

g

−−→
OP2√

H2

g + K2

g

and(81)

−−−→
OŴ = ±

√√√√1 + H2

g + K2

g

H2

g + K2

g

(
H
√
g

−−→
OP1 +

K
√
g

−−→
OP2

)
,(82)

are conjugate semi-diameters of the Pohlke’s ellipse EP(O,P1, P2, X3). Not-

ing the expressions (71) of Lemma 4.2, it is clear OV̂ , OŴ coincide with the

conjugate semi-diameters OṼ ,OW̃ respectively of the secondary Pohlke’s el-
lipse ES(O,P1, P2, P3). Thus (80) holds.
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Thanks to the considerations made in Remark 2.1, this implies that the

secondary Pohlke’s projection Π̃ corresponding to the triad of segments
OP1, OP2, OP3 and the Pohlke’s projection of the triad OP1, OP2, OX3 are
equal. More precisely, taking account the conditions (1) and (2), let us

denote with Ŝ a sphere centered at O, with Q̂1, Q̂2, Q̂3 three points of Ŝ

and with Π̂ : E3 → ω a parallel projection such that:

Π̂(OQ̂1) = OP1, Π̂(OQ̂2) = OP2 and Π̂(OQ̂3) = OX3,(83)

OQ̂1 ⊥ OQ̂2, OQ̂2 ⊥ OQ̂3, OQ̂3 ⊥ OQ̂1.(84)

Then, by Remark 2.1, it follows that

(85) S̃ = Ŝ and Π̃ ∼ Π̂.

For our purposes the projection Π̃ and its symmetric with respect to the

plane ω are equivalent, thus we can take Π̃ = Π̂. Then, to fulfill the condi-
tions (4), (5) and (6), we only need only to select appropriately the points

R1, R2, R3 ∈ Ŝ. More precisely,

(86) Ri = Q̂i or Ri = Q̂i
′ (1 ≤ i ≤ 2) 6

and then R3 ∈ Ŝ such that

(87) Π̂(R3) = P3 and OR3 ⊥ OR′1 .

Thanks to the symmetry with respect to the plane π̂, it is indifferent to

start with R1 = Q̂1 or R1 = Q̂1
′. If, for instance, we start with R1 = Q̂1

then we must take

(88) R2 = Q̂2 ,

because OQ̂1 6⊥ OQ̂2
′. 7 After selecting R2, the point R3 can be obtained

by applying Claim 5.1. Namely, we must have

(89)
−−→
OR3

def
=
−−→
OP3 −

−−→
OR2 ·

−−→
OP3

−−→
OR2 · −→w

−→w ,

where −→w is any nonzero vector representing the direction of the secondary

Pohlke’s projection Π̃, i.e., the direction of the projection Π̂.

5.1. Reference tetrahedron and direction of projection. Summariz-
ing up we give now a procedure for determining the points R1, R2, R3 and
the direction of the secondary Pohlke’s projection. As for Pohlke’s projec-
tion, we use a system of coordinate axes x, y, z such that ω is the plane

6 Because Π̂(Q̂i) = Π̂(Q̂i
′) = Pi, for 1 ≤ i ≤ 2. According to the previous notation,

Q̂i
′ is symmetric to Q̂i with respect to the plane π̂ through O and perpendicular to the

direction of the projection Π̂.
7 Indeed, OQ̂1 ⊥ OQ̂2 ∧ OQ̂1 ⊥ OQ̂2

′ ⇒ Q̂1 ∈ π̂ ∨ Q̂2 ∈ π̂. But this cannot happen

because, by (85), we already know that Π̂ = Π̃ is as secondary Pohlke’s projection for the
triad of segments OP1, OP2, OP3.
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z = 0 and (16) holds. We suppose that OP1, OP2, OP3 are non-parallel and
that condition (58)-(59) is true. Then we consider the matrix

(90) Â =

 x1 x2 x̂3
y1 y2 ŷ3
0 0 0

 =

 Â1

Â2

0

,
where

(91) x̂3 =
H
√
g
x1 +

K
√
g
x2 , ŷ3 =

H
√
g
y1 +

K
√
g
y2

and H = h(h2−k2−1), K = k(h2−k2 +1) are the terms introduced in (64)

with h, k as in (58). Having defined the matrix Â, we continue by following
the formulae (3.6), (3.10), (3.21), (3.22) of [4]. We define the quantities:

(92) γ̂ = arccos

(
Â1 · Â2

‖Â1‖ ‖Â2‖

)
, λ̂ =

‖Â1‖
‖Â2‖

,

(93) η̂ =
λ̂
2

+ 1 +

√
(λ̂

2
+ 1)2 − 4λ̂

2
sin2γ̂

2 λ̂
2

sin2γ̂
,

(94) ν̂ = ± ρ̂ with ρ̂ =
‖Â1‖
λ̂
√
η̂

=
‖Â2‖√
η̂
,

and, finally,

(95)
(
α̂, β̂

)
= ±

(√
η̂ λ̂

2 − 1 , sgn(cos γ̂)
√
η̂ − 1

)
,

where t 7→ sgn(t) is the “signum” function introduced in (21). Then, by the

results of [4, Section 4], the coordinates of the points Q̂1, Q̂2, Q̂3 satisfying

(83), (84) are the columns B̂1, B̂2, B̂3 respectively of the matrix

(96)

B̂ =
1

1 + α̂ 2 + β̂
2

 1 + β̂
2 −α̂ β̂ −α̂

−α̂ β̂ 1 + α̂ 2 −β̂
α̂ β̂ 1



·

 x1 x2 x̂3

y1 y2 ŷ3
x2 ŷ3−y2 x̂3

ν̂
y1 x̂3−x1 ŷ3

ν̂
x1 y2−y1 x2

ν̂

.
The direction of the projection Π̂ : E3 → ω is determined by the vector

(97) −→w =

 −α̂−β̂
1

.
Recalling the arguments from (86) to (89), it is now sufficient to modify

the third column of B̂ = (B̂1, B̂2, B̂3). More precisely, we define the matrix

B̃ = (B̃1, B̃2, B̃3) by setting

(98) B̃1 = B̂1, B̃2 = B̂2 and B̃3 = P3 −
B̂2 · P3

B̂2 · −→w
−→w .
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The coordinates of the points R1, R2, R3 are then the columns B̃1, B̃2, B̃3

respectively and the direction of the secondary Pohlke’s projection Π̃ is
represented by −→w defined in (97), so we have

(99) Π̃

 x
y
z

 =

 x+ α̂z

y + β̂z
0

.
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