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ABSTRACT 
 

Energy audits of existing buildings are especially important for public buildings and, in particular, for schools, where 

a more efficient use of energy implies unquestionable benefits to public budgets.  Schools audit can drive the public 

administrator to better address retrofit investments, facilitating the choices of energy efficiency measures in the 

renovation or operation phases. However, the energy audit of existing buildings can be onerous when the number of 

buildings is large and requires extensive monitoring campaigns, field surveys and energy performance calculation. A 

simplified method for building energy diagnosis is the “Energy Signature” (ES) method described in the annex B of 

standard EN 15603:2008. According to this approach, heating and cooling energy uses of a given building are 

correlated to climatic data over a suitable period. Plotting for several time periods the average heating or cooling 

power versus the average external temperature provides useful information on building energy performance and allows 

a fast detection of malfunctions or changes in the building operation/features, as well as the verification of the efficacy 

of any retrofit intervention. Although this method is preferably adopted in the case of constant internal temperature 

(e.g., fixed temperature setpoint) and when the external temperature is the most influential parameter (e.g., for 

buildings with stable and relatively low internal and passive solar gains), it can be applied also recording energy use 

for heating or cooling and accumulated temperature difference between indoor and outdoor, at average regular 

intervals (e.g., one hour or, for manual monitoring, a week). The ES is the best fitting linear regression between these 

two quantities and, consequently, can be characterized by means of intercept and slope.  

In this paper, the building energy signature parameters have been used to analyze a large set of school buildings and 

to define the characteristics most influential on the energy needs. In particular, the weekly energy consumptions for 

heating of a set of 42 school buildings located in the province of Treviso, North East of Italy, have been considered. 

A cluster analysis based on multiple regression has then been used to identify the buildings’ subsets homogeneous as 

for the features affecting the signature parameters. 

 

1. INTRODUCTION 
 

The Energy Efficiency Directive 2012/27/EU (European Parliament, 2012) has accelerated the spread of energy 

efficiency strategies by identifying existing buildings as a strategic sector for the reduction of energy consumptions. 

In particular, the public sector has been set within the European energy policy as the leading one for the promotion of 

energy efficiency measures. Public authorities represent the first example for the citizens, giving guidance and good 
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practices to highlight the importance of energy efficiency, changing the behavior and individual choices. According 

to the directive, in fact, every year starting from 2014, central Government buildings are required to be renovated to 

meet at least the national minimum energy performance requirements set in application of the Energy Performance of 

Buildings Directive (European Parliament, 2010). A 3% annual renovation is the target currently prescribed. 

Achieving this objective requires the management of retrofitting for the whole building stock that means developing 

strategies suitable for the different building typologies (Geyer et al., 2016). Excluding the climatic conditions, 

buildings’ energy demand, in fact, is strictly related to the geometry shape, the envelope thermal quality, the system 

efficiency and building management (i.e., opening hours and windows, shading, lighting and system operation). 

Energy audit of existing buildings can be onerous when the number of buildings is large and it requires extensive 

monitoring campaigns, field surveys and energy performance calculation. For these reasons, one of the priorities, 

when a big stock has to be analyzed, is the classification starting from a few kind of data. In the literature, three 

approaches for energy audit can be distinguished: a case by case approach based on detailed on-site monitoring, the 

energy signature approach applied to one or more buildings and a clustering method when the number of buildings is 

high and there is the need of grouping buildings with similar features. In order to compare different retrofit scenarios 

for a primary school in Moita, Portugal, Brás et al. (2015) performed a standard energy audit with data collection by 

on-site monitoring and interviews. Dall’O and Sarto (2013) analyzed 49 Italian schools to develop three sets of retrofit 

measures (i.e., standard, cost-effective and high performance) to apply to the whole sample of buildings. As 

preliminary step, an energy audit campaign was carried out and actual energy consumption for space heating, 

occupants’ behavior and technical characteristics of the buildings were collected. Marinosci et al. (2015) used the 

energy signature as simplified energy audit in the refurbishment of the historical building of the School of Engineering 

and Architecture of Bologna, Italy. As a whole, energy signature is one of the most utilized tool to investigate and 

assess controls and management in buildings (Lindelöf et al., 2015; Belussi et al., 2015; Belussi and Danza, 2012; 

Hitchina and Knightba, 2016), but also to detect building thermal performance information (Danov et al., 2013; 

Nordström et al., 2012). However, when the sample of buildings is large and a few representative cases have to be 

found, cluster analysis is the tool mostly applied. For example, Santamouris et al. (2007) used clustering techniques 

to define energy classes based on heating energy consumption of a large sample of schools in Greece. Gaitani et al. 

(2010) used principal component and cluster analysis to group school buildings with similar characteristics and to find 

the typical school for each level of energy class. Arambula et al. (2015) applied cluster analysis in order to group 

schools with similar characteristics and find representative architectural types and a small number of parameters for 

an effective description of the energy consumption for heating and hot water production.  

In this paper, energy signature and cluster analysis approaches have been combined in order to group a set of 42 school 

buildings located in the North of Italy. Schools energy signature parameters, i.e., the slope and the zero of linear 

regression function, have been used as dependent variables to group schools in clusters. The cluster analysis has been 

used to identify the buildings’ homogeneous subsets as for the features affecting the signature parameters. 

 

2. METHODS 
 

2.1 Energy Signatures Implementation 
A building energy audit can be performed by the “Energy signature” method described in the annex B of the EN 

15603:2008 (CEN, 2008). According to this approach, heating and cooling energy uses of a given building are 

correlated to climatic data over a suitable period. Plotting for several time periods the average heating or cooling 

power versus the average external temperature provides useful information on the building energy performance and 

allows a fast detection of malfunctions or changes in the building operation/features. Generally, the indoor air 

temperature is considered constant, and assumed to be equal to the setpoint and, for this reason, the external air 

temperature results the most influential parameter. Energy signature is preferably applied for buildings with stable 

internal gains and relatively low passive solar gains. Its application requires that energy uses for heating or cooling, 

as well as average external temperatures or, when possible, accumulated temperature differences are recorded or 

obtained at regular intervals. These intervals can be as small as one hour, but a week is often used, since this time 

discretization is long enough to neglect non-linear short-term behaviors due to the building thermal inertia. For this 

reason, in this work, weekly intervals have been adopted. The indoor air temperature has been fixed at 20 °C during 

the occupancy time. The average weekly power per unit volume, obtained by dividing the energy use during one week 

per unit volume by the amount of opening hours per week (Equation 1), has been plotted versus the weekly heating 

degree-hours during the opening hours (Equation 2).  

Energy signatures are characterized by two main parameters: the slope of the regression function and the intersection 

with the x-axis, hereafter called zero of the function. The slope represents the energy performance of the building: the 
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steeper the slope, the larger is the heating power needed. The zero of the function represents the minimum number of 

HDH20,occ for which the system has to be turned on: the higher is the intercept, the better is the passive building thermal 

performance. 
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2.2 Multiple Regression and Clustering 
According to the methodology already developed and described in Arambula et al. (2015), the first step regards the 

selection of the most correlated parameters to perform the clustering. The slope and the zero of the function of each 

building can be correlated to some of them, such as those describing the geometry and the thermal properties of the 

envelope and the heating system capacity. The influence of each quantity on the slope and the zero is different and the 

highly correlated parameters and variables can be used to characterize effectively the sample of buildings and to 

develop the clustering. A list of 12 candidate descriptive quantities has been used: the area of the vertical walls exposed 

to the external environment, of roof, of floor and of floor in thermal contact with the ground, respectively, Avw, Ar, Af 

and Af-g [m2]; the total area of opaque and transparent envelope, i.e., Aenv,o and Aenv,gl [m2]; the ratios between windows’ 

area and vertical walls’ area Awin/Avw, between windows and total floor areas Awin/Af  and between transparent and 

opaque envelope Aenv,gl/Aenv,op; the average thermal transmittance of the envelope U [W m-2 K-1]; the shape factor of 

the school, expressed in terms of ratio S/V [m-1] between the dissipating surface S and the conditioned volume V and 

the capacity of the heating system H [kW]. 

A multiple linear regression has been adopted to find the sets of the candidate quantities which better define 

homogenous groups, to perform the following clustering. Indeed, the selected quantities can be employed both to 

identify the groups and to develop linear predictive models for their elements. One regression has been performed for 

slope and another one for the zero of the function. For each one of the 12 descriptive quantities, the highest value in 

the whole dataset has been identified and used to normalize the characteristics of each building. The predictors have 

been grouped in 4083 possible combinations starting from groups with 2 to groups with 12 predictors. For each 

regression, the adjusted index of determination R2
adj has been calculated and monitored, as well as F-tests and the p-

values to check the model’s statistical significance and variance inflation factors VIF for the analysis of multi-

collinearity issues. Only models with significant p-value with respect to a significance level of 10 % and, preferably, 

without multi-collinearity issues (i.e., VIF < 10) have been considered for the definition of the quantities for the 

clustering. The combinations of predictors with the highest R2
adj have been selected as set of coordinates to define the 

“position” of each element in the sample of schools. The next two steps involve the clustering and its validation. K-

means approach is one of the most popular techniques in clustering and data mining and it is based on a simple 

partitional algorithm that tries to find K non-overlapping clusters (Lloyd, 1957; Wu, 2012). By this method, once 

defined the desired number of clusters K, an equivalent number of centroids is selected and data points are assigned 

to the closest centroid according to the squared Euclidean distances calculated from the closer centroid. After the 

definition of the clusters, it is possible to validate them by checking if the combination of predictors with the highest 

R2
adj with respect to the whole dataset is the best for the cluster as well. If it is not, the combination of predictors with 

the highest R2
adj is found and used as new coordinate system. If the cluster has an improved but still low R2

adj, and if 

enough buildings are present to consider sub-clustering (i.e., with at least 25 elements), it is possible to run the 

algorithm again, but using, this time, the set of parameters with the highest R2
adj for the cluster to split.  

Since the whole dataset for the clustering includes 42 elements, and since the objective is to find a matrix of clusters 

(a slope-zero matrix), we imposed KI = KII = 2 for both clustering and sub-clustering. As it is commonly done in K-

means approaches, the initial virtual centroids are randomly generated within the domain of the dataset. After the 

creation of the initial clusters, the centroids C1,k are calculated and the K-means approach is iterated. The heuristic 

procedure continues until the determination of the ith combination of centroids Ci,k minimizing the global squared 

Euclidean distances. Since this method is sensitive to the choice of the initial centroids C0, k, each clustering has been 

repeated several times with different random centroid and the solution giving the best improvement with respect to 

the statistical models has been selected. Once all possible clusters have been defined, the results have been analyzed 

and the models optimized. The number of predictors, their combination and new regression models have been re-

calculated with the elements of each of the cluster in order to find possible improvements to the adjusted index of 
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determination. Also in this case, F-values, p-values and VIF have been analyzed to determine if the models can only 

describe the data in the clusters or be used also for further extrapolations and predictions. As a final step, the schools 

closest to the centroids are determined. 

 

3. RESULTS 
 

3.1 Energy Signatures 
As specified in the method, the first step has been to elaborate the schools’ energy signatures. The results of this 

approach are shown in Figure 1 where the regression functions of each school energy signature have been plot on a 

two-axis graph. The slope of the curves represents the normalized heating power per heating degree hour and as it can 

be seen in Figure 1, almost all the functions have a slope included between 0.005 and 0.075 W m-3 K-1 h-1. Only school 

TV032_01 presents an abnormal slope of 0.286, thus revealing a great uncertainty in the reliability of the available 

data. Concerning the zero of the function, almost all of the curves presents a positive value included between 21.1 and 

277 K h, thus revealing a great variability in the schools’ thermal inertia towards the outdoor climatic variation. An 

extreme case is represented by school CN028_09, with an almost null zero of the function value. 

 
 

               CN028_09                    TV032_01 

Figure 1: Schools energy signatures regression functions (left) and zero and slope of functions (right) 

 

3.2 Multiple Linear Regression and Clustering 
The energy signatures of the set of schools have been used to implement a multiple linear regression taking into 

account the 12 predictors used to describe the entire stock of buildings as independent variables and the zero and the 

slopes in turn as dependent variables of a linear function. The linear models have been elaborated starting from the 

smallest groups (i.e., 2 predictors) and evaluated in terms of R2
adj, F-value and p-value, taking into account the top-

ten configurations output for each set of variables. Results show that the most descriptive configurations have been 

obtained with a maximum of 6 variables, since the R2
adj tend to increase only from 2 to 6 predictors. 

The top-ten configurations among the 924 combinations obtained with 6 predictors, each one identified by an ID 

number, have been selected for both zero and slopes of the functions (Tables 1 and 2). As it can be seen, the statistical 

indexes are similar for all of them. 

As regards the involved predictors, it can be noticed that floor area, opaque and transparent envelope area and ratio 

between windows and floor area are the most common variables for the zero of the function’s top-10 combinations, 

whereas for the slope’s combinations the most recurring ones are the ratio between vertical walls and windows, the 

average between the opaque and the transparent envelope, the average thermal transmittance of the envelope, and the 

compactness ratio S/V. In addition to these common predictors, some others descriptive variables differentiate each 

model. 

All the top ten combinations have been used to perform the first clustering and the results are shown in Table 3 and 4. 

In order to choose the best ID to perform the further steps, a preliminary analysis has been managed according to the 

statistics and to the number of elements included in each resulted cluster. Looking at their R2
adj, F-value, p-value and 
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their numeric quantity, the configurations chosen for the further steps are ID805 and ID825 respectively for the zero 

of the function and the slope. 

 

3.2.1 Zero of the function clustering. The results for the zero of the function clustering are shown in Table 5. ID805 

have been grouped in two clusters (i.e., CLz1 and CLz2) of 15 and 27 elements. The multiple regression of each cluster 

has been performed in order to find the best descriptors combination. After this regression, ID819 is the best 

combination for CLz1, having a R2
adj equal to 0.85, and ID755 the best for CLz2, even with a still very low R2

adj. So, a 

second clustering has been implemented for CLz2. Combination ID755 has been used and CLz2.1 and CLz2.2, 

respectively made of 14 and 13 elements, have been formed. The results have been further optimized with a second 

regression, performed by ID427 for CLz2.1 and ID148 for CLz2.2. In this way, three final clusters have been obtained: 

CLz1 with a R2
adj of 0.85, and CLz2.1 and CLz2.2 with a R2

adj respectively of 0.82 and 0.94, with a considerable 

improvement of the initial R2
adj values. 

 

Table 1: Zero of the function. Top-10 combinations selected for the first clustering and their descriptors. 

 

Zero of the function 

ID 805 286 861 346 356 614 871 851 872 362 

Predictors                     

Avw  x  x x     X 

Ar      x     

Af x x x x x x x x x X 

Af-g x x         

Aenv,op   x x x x x x x X 

Aenv,gl x x x x x x x x x X 

Awin/Avw x  x   x x x x X 

Awin/Af x x x  x x x x x X 

Aenv,gl/Aenv,op         x  

U    x    x   

S/V x x x x x      

H       x    

R2
adj 0.16 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 

F value 2.27 2.24 2.23 2.17 2.16 2.16 2.15 2.15 2.11 2.11 

p-value 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.08 0.08 

 

Table 2: Slopes. Top-10 combinations selected for the first clustering and their descriptors. 

 

Slopes 

ID 902 557 662 761 661 822 627 881 825 762 

Predictors                     

Avw           

Ar  x x  x  x    

Af           

Af-g  x  x  x   x X 

Aenv,op    x   x x  X 

Aenv,gl x  x  x      

Awin/Avw x x x x x x x x x X 

Awin/Af    x  x    X 

Aenv,gl/Aenv,op x x x   x x x x X 

U x x x x x x x x x X 

S/V x x x  x x x x x  

H x   x x   x x  

R2
adj 0.17 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

F value 2.38 2.34 2.28 2.23 2.22 2.21 2.20 2.20 2.19 2.18 

p-value 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07 
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3.2.2 Slope clustering. The same process has been implemented with the slope combinations (Table 6). For the first 

clustering, combination ID825 has been used and grouped in 2 clusters (i.e., CLs1 and CLs2) of 18 and 14 elements. 

After the regression for the selection of better predictors, ID442 and ID818 are found optimizing, respectively, CLs1 

with R2
adj equal to 0.41 and CLs2 with a R2

adj of 0.73. While the latter can be considered satisfying, the first cluster has 

been divided again into 2 clusters, using ID442 which is the best ID that has optimized the results. CLs1.1 and CLs1.2 

are composed of respectively 14 and 13 buildings. The results have been further optimized with a second regression, 

performed with ID222 for CLs1.1 and ID769 for CLs1.2. In this way, three final clusters have been obtained: CLs2 with 

a R2
adj of 0.73, and CLs1.1 and CLs1.2 with R2

adj respectively of 0.60 and 0.99, with a good increasing of the CLs1 and 

CLs2 R2
adj values output from the first clustering. In Table 7, the 6 predictors of the best IDs configurations can be 

observed. 

 

Table 3: Results of the 1st clustering for each ID configuration (zero of the function as dependent variable). 

Zero of the function 

ID 805 286 861 346 356 614 871 851 872 362 

CLz1 

R2
adj 0.516 0.322 0.121 0.558 0.100 0.225 -0.282 -0.011 -0.006 0.004 

F value 3.486 1.870 1.734 3.107 1.558 1.339 0.707 0.941 0.966 1.020 

p-value 0.053 0.254 0.153 0.146 0.203 0.579 0.686 0.483 0.466 0.434 

N 15 12 33 11 31 8 9 34 34 34 

CLz2 

R2
adj -0.086 0.102 0.325 0.066 0.286 0.006 0.012 0.597 0.836 0.255 

F value 0.657 1.550 1.641 1.355 1.666 1.034 1.067 2.730 6.937 1.399 

p-value 0.684 0.207 0.426 0.273 0.323 0.425 0.407 0.433 0.283 0.570 

N 27 30 9 31 11 34 33 8 8 8 

 

 

Table 4: Results of the 1st clustering for each ID configuration (slope as dependent variable). 

Slopes 

ID 902 557 662 761 661 822 627 881 825 762 

CLs1 

R2
adj 0.109 0.200 0.091 0.249 1.00 0.020 0.117 0.141 0.226 0.522 

F value 1.388 1.960 1.469 2.772 - 1.078 1.732 1.929 2.315 2.640 

p-value 0.290 0.129 0.234 0.032 - 0.413 0.152 0.111 0.071 0.228 

N 20 24 29 33 1 24 34 35 28 10 

CLs1 

R2
adj 0.489 0.566 -0.060 0.896 0.148 0.014 0.763 - 0.629 0.149 

F value 4.349 4.701 0.886 12.484 2.155 1.040 4.753 - 4.676 1.906 

p-value 0.010 0.013 0.556 0.076 0.072 0.450 0.337 - 0.031 0.119 

N 22 18 13 9 41 18 8 7 14 32 

 

 

Table 5: Results of the clustering and optimization basing on the zero of the function as dependent variable. 

Zero of the function 1st clustering 1st regression 755- subclustering 2nd regression 

ID 805 819 755 427 

 CLz1 CLz1 CLz2.1 CLz2.1 

R2
adj 0.516 0.852 0.285 0.823 

F value 3.486 14.479 1.862 11.101 

p-value 0.053 0.001 0.217 0.003 

N 15 15 14 14 

ID  755  148 

 CLz2 CLz2 CLz2.2 CLz2.2 

R2
adj -0.086 0.033 0.906 0.945 

F value 0.657 1.148 20.211 35.493 

p-value 0.684 0.372 0.001 0.000 

N 27 27 13 13 
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Table 6: Results of the clustering and optimization basing on the slope as dependent variable. 

 

Slope 1st clustering 1st regression 442- subclustering 2nd regression 

ID 825 442 442 222 

 CLs1 CLs1 CLs1.1 CLs1.1 

R2
adj 0.226 0.302 0.563 0.606 

F value 2.315 2.947 4.865 5.614 

p-value 0.071 0.030 0.010 0.006 

N 28 28 19 19 

ID  818  769 

 CLs2 CLs2 CLs1.2 CLs1.2 

R2
adj 0.629 0.731 0.850 0.997 

F value 4.676 6.882 8.548 389.260 

p-value 0.031 0.011 0.108 0.003 

N 14 14 9 9 

 

 

Table 7: The 6 predictors resulted from each best ID configuration. 

 

 Zero of the function Slope 

ID 819 427 148 818 222 769 

Predictors             

Avw  x x  x  

Ar   x x x x 

Af x x  x  x 

Af-g x      

Aenv,op    x x x 

Aenv,gl x x x x x  

Awin/Avw  x x x x  

Awin/Af x x   x  

Aenv,gl/Aenv,op x   x  x 

U   x   x 

S/V  x     

H x  x x  x 

 

 

 
 

Figure 2: Schools energy signatures slope and zero of function, grouped by clusters 
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3.2.3 Comprehensive results. In Figure 2, the entire sample of schools grouped by the cluster analysis is represented. 

Each school position is given according to its belonging to a cluster for both the zero of the function and the slope of 

its energy signature. The clusters combinations, expressed in the legend, are elaborated using a matrix in which the 

zero clusters are crossed with the slope ones. The matrix consists of 3 rows and 3 columns, that combined together 

give a total of 9 possible combinations. 

 

  

  

  
Figure 3: Actual vs. Estimated zero of the function of schools in clusters Cz1, Cz2.1, and Cz2.2 in green color, and  

clusters Cs2, CLs1.1 and CLs1.2 in blue color. The dashed lines indicate a deviation of ±20 %. 
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In the legend, only 7 of these are shown, since no school is included in the CLs1.2+CLz2.1 and in the CLs1.2+CLz2.2 

cases. Each X indicates the school nearest to the centroid of each cluster, with the exception of school CN042_01 

which refers to two clusters, one for the zero and one for the slope. 

Finally, Figure3 shows the comparison of the linear regression models to the actual data, for schools included in 

each cluster, the normalized values of the outputs (i.e., the zero of the function in the left side, the slopes in the right 

side). In the x-axis there are the measured data, in the y-axis the results of the regression. 

As it can be observed, the models fit well for almost all the clusters, since almost all the elements in the stock are 

within the error band of ±20%. The only exception is CLs1.1, in which some points exceed the deviation trend line. 

This confirms the results of Table 5 and Table 6, where it can be seen that ID222 model regression obtained the lowest 

value of R2
adj. 

 

4. CONCLUSIONS 
 

In this work the problem of energy auditing a large stock of buildings is discussed. The sample study includes 42 

schools in the Province of Treviso, in the North-East of Italy. In order to achieve the purpose, firstly the schools’ 

energy consumptions have been analyzed with the energy signature method, then the K-means cluster analysis has 

been used for their classification. In addition to this, the multiple linear regression approach has been implemented to 

validate and optimize the cluster analysis results. The main steps and final goals of the method have been the following 

ones: 

 Starting from relatively few data from a large building stock, using the energy signature method it has been 

possible to analyze and compare buildings energy performance without onerous and long-term monitoring 

campaigns. 

 Starting from a set of 12 descriptive variables (i.e., predictors), correlated with the normalized zero of the 

functions and the normalized slopes of the outcome energy signatures, through a first multiple linear 

regression these predictors have been reduced from 12 to 6. 

 After the identification of the best group of predictors, a cluster analysis has been performed and validated 

through some statistical indices, the adjusted index of determination, p-values and F-values. This step has 

been iterated until the clustering output was no more meaningful nor improvable. 

 Data in the clusters have been studied and optimized with regressions. For the zero of the function, CLz1 has 

a R2
adj of 0.85, and CLz2.1 and CLz2.2 with a R2

adj respectively of 0.82 and 0.94, with a considerable 

improvement from the CLz1 and CLs2 first R2
adj values. For the slopes, it was obtained a CLs2 with a R2

adj of 

0.73, CLs1.1 and CLs1.2 with a R2
adj respectively of 0.60 and 0.99, with also in this case a good increasing of 

the CLz1 and CLs2 R2
adj values output from the first clustering. 

 For each best ID configuration, it has been possible to select the 6 predictors that describe the set of school 

included in the clusters, which can be, in additional phase, the areas of intervention to act on. 

Further outlooks of this research project are to identify the representative schools for each cluster. Then, taking into 

account the set of variables most influencing each stock of schools, to compile a list of possible interventions and 

classify the schools according to a priority of refurbishment. In addition to this, applying a cost-optimal approach, the 

most convenient solutions can be pointed out. Finally, conducting this approach also in the further years, there is the 

possibility to check the potentialities of the method described in this paper to highlight the effects of performed energy 

efficiency measures. 

 

NOMENCLATURE 

 
Symbol  Subscripts  
A  

CL   

C            

EP 

F  

H   

h  

HDH  

K  

area (m²) 

referred to cluster  

referred to centroid  

Primary Energy 

F-test statistic (-) 

capacity of the heating system (kW) 

hour (h) 

heating degree hours (K h) 

number of partitions for K-means algorithm 

0  

20   

 

adj  

env,gl   

env,o  

ext  

f    

f-g   

initial 

referred to an indoor set temperature of 

20°C 

adjusted 

referred to transparent envelope 

referred to opaque envelope 

external 

referred to floor  

floor in thermal contact with the ground 
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N            

R²  

S   

T  


U   

V  

VIF 

number of elements 

index of determination (-) 

dissipating surface (m²) 

temperature (°C) 

time (h) 

thermal transmittance (W m-2 K-1) 

conditioned volume (m³)  

variance inflation factor (-) 

h 

occ   

r    

s             

vw  

  

win  

z         

referred to heating 

occupancy time 

referred to the roof  

referred to the slope 

vertical walls exposed to the external 

environment 

referred to the windows 

referred to the zero of the function 
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