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Abstract

In the last decade, solar photovoltaic has started to play a significant role in the energy mix consumption. Although this growth
has involved almost all the western countries, marked differences in the regional distribution of photovoltaic generation capacity
have been observed. These differences appear to be weakly related to climate conditions in general, and to solar radiation
specifically. The literature has started to investigate the other underlying determinants, suggesting to consider the occurrence of
spatial proximity effects. Accordingly, this study aims to analyze whether and to what extent the photovoltaic energy production
depends on local factors, such as climate, demand, income, innovative and responsible behavior, and so forth. Through a spatial
autoregressive model, we find that the regional distribution of photovoltaic production capacity is affected by strong spatial
dependence. We show that the availability of photovoltaic energy may be explained by peer effects, such as diffusion of habits
and emulation of neighbors.
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1. Introduction and background literature

The energy production and consumption models have experienced significant changes during the last decades [1].
On the supply side, although fossil fuels are still the most prominent sources, the transition to renewables is
underway. Many countries have massively developed photovoltaic (PV) power generation systems. As a case in
point, the share of electricity consumption met by solar energy is now more than 5% in Germany and up to 7% in
Italy [2].
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Nomenclature

Ci creativity index [%] Pp per capita photovoltaic production [kWh]
Ec per capita electricity consumption [kWh] Ps consumption met by photovoltaic [%]

Ef exogenous factors Sr solar radiation [MJ/m2]

Gdp per capita gross domestic product [Euros] o constant

Hd housing density [Building/km2] B,y,0,0 regression coefficients

Hm average size of households ] spatial indicator

Ir innovative and responsible behaviour s-1 indicator for spatially lagged variables

Worldwide, the installed capacity has grown to over ten times the level in 2007 [2]. According to IEA’s Outlook,
solar energy is expected to play an increasing role in the years to come [3]. The above framework suggests
investigating the PV deployment at regional and local scale and its determinants, the knowledge of which is rather
limited. Balcombe et al. [4] have reviewed the motivations and barriers to the adoption of microgeneration
technologies. Besides the local climate characteristics - especially the level of solar radiation [5] - several
socioeconomic factors - such as age, income, investment cost, expected and actual return on investment - have been
found to explain the consumers’ propensity to use renewable energy systems [6-11]. Balta-Ozkan et al. [12] show
that also electricity demand, population density, pollution, and education are significant drivers.

Spatial dependence characterizes many ecological and social phenomena. It means that the behavior of a unit is
affected by what happens in the surrounding areas, due to the so-called peer interaction effects, such as the diffusion
of habits and the emulation of neighbors. A devoted research branch has stressed that proximity, neighborhood
effects, and peer effects are important in shaping the spatial deployment of PV installations [11-17]. These effects
turn out to play a prominent role, more than climate conditions [18]. A comprehensive review of the literature
mentioned above can be found in Balta-Ozkan et al. [12].

2. Models, data, and method

We are interested in analyzing the dynamic relationship between the per capita PV production (Pp), the share of
electricity consumption met by PV energy (Ps), and other explanatory covariates, in order to understand the
behavior of the solar energy market. Our data are not simple cross-sectional because a spatial order characterizes the
observations in the sample, which thus are not interchangeable. The spatial contiguity of the units raises a problem
of serial correlation that seriously affects the statistical properties of the estimates. Analogous to the time series
analysis, the issue can be solved by using spatial autoregressive (SAR) systems that include lagged terms [19,20,21].
SAR systems are useful to express the bivariate relationship between energy production and consumption.

Let us define the spatial index s=[latitude, longitude]. The first-order lagged dependent variables Pps.; and Psg
are represented by the average values of Pp; and Ps, in the surrounding areas. Besides these lagged dependent
variables, the other explanatory variables we consider are as follows: Ec, represents the per capita electricity
consumption; Ir; is the vector of variables assumed as proxy of innovative and responsible behavior; Ef; is the vector
of exogenous factors. The three following variables approximate innovative and responsible behavior: creativity
index (Cis); technology index; waste recycling rate. The vector of exogenous factors include several variables:
latitude; solar radiation (Sry); surface area; residential buildings; housing density (Hd;); population density;
households; average number of members per household (Hmy); per capita gross domestic product (Gdps),
manufacturing firms, share of Plc and Ltd companies.

If the errors & are mutually independent, then the estimation of the SAR system can be performed by separate
equations. Accordingly, the two regression models, with parameters o, 3, y, 6, and ® are as follows:

Pps=a+pBPps-1+7y Ecs+8'Irs + o' Efs + & (1)

Pss=a+ B Pss-1+ 7y Ecs+0'Irs + o' Efs + & )
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In(Pps) = o+ B In(Pps -1) + v In(Ecs) + 8" In(Irs) + @' In(Efs) + &

In(Pss) = a+ B In(Pss-1) + v In(Ecs) + 8' In(Irs) + @' In(Efs) + &

3)

(4)

The use of the logarithmic transformation is motivated by possible non-linear relationships between the variables.
Eqs (1)-(4) are estimated using the Ordinary Least Squares method (with robust standard errors according to the
White’s dispersion matrix), by performing a forward stepwise regression. The packages we use are R and Gretl. The
data cover 110 provinces in Italy (according to the NUTS3 classification). The spatially lagged dependent variables

are defined according to the proximity structure of the units (Fig. 1).

3. 3. Results and discussion

Tables 1 and 2 show the results. As expected, the share of electricity consumption met by solar photovoltaic
energy depends on climate factors; however, their statistical significance is rather limited. The solar radiation Sr
hardly explains more than 5% of Pp; variance, this raises questions about plant efficiency, network distribution and
location policies of solar facilities. Instead, latitude and surface area are excluded from the models due to

collinearity issues.

Table 1. Results of the linear models according to Egs. (1) and (2).

Dependent Pps Dependent  Psg

B t-stat  p-value Vif. B t-stat  p-value Vif.
const 970.2840 2397  0.0183 const 57.6107 5.678  0.0000
Ppsy 0.5111 4.136  0.0001 1.133 Psqq 0.4393 2.573  0.0115 1.453
Ec, Ec, -0.0013 3.025  0.0031 1.392
Cig -92.5855 5.489  0.0000 1.033 Cig -1.9563 4716  0.0000 1.181
Sr 0.2099 3.200  0.0018 1.164 Sr,
Gdp; Gdp; -0.0002 1.903  0.0598 1.771
Adj. R 0.3486 Adj. R? 0.3739
F-stat 18.1196 0.0000 F-stat 14.1993 0.0000
White’s test 15.2935 0.0832 White’s test ~ 13.2599 0.5062

Table 2. Results of the logarithmic models according to Egs. (3) and (4).

Dependent In(Pps) Dependent In(Ps;)

B t-stat p-value V.i.f B t-stat p-value V.i.f.
const 5.3553 1.710 0.0903 const 13.6455 4.483 0.0000
In(Pp,.1) 0.6068 4.865  0.0000 In(Ps,.) 0.5258 4.802  0.0000 1.534
In(Ec;) 0.4209 2.846  0.0053 In(Ec;) -0.4753 3.119  0.0024 1.397
In(Ciy) -2.9160 4.325  0.0000 In(Ciy) -3.3504 4.760  0.0000 1.283
In(Hd,) -0.3945 4.017  0.0001 In(Hd,) -0.3515 3295  0.0013 1.385
In(Hmy) 4.1082 4.189  0.0001 In(Hmy) 3.0297 3.047  0.0029 1.476
Adj. R? 0.5265 Adj. R? 0.5854
F-stat 25.3647 0.0000 F-stat 39.9121 0.0000
White’s test 27.5117 0.1215 White’s test ~ 26.2341 0.1582
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Fig. 1. Proximity structure.

Other significant variables are Cis, Gdps, Hd,, and Hm,. The unexpected result is that they all have a negative sign.
The adoption of innovative and responsible behavior does not emerge as a driver of photovoltaic production. The

fact that Ppy and Ps, are high where income and housing density are lower, as well as where the number of

household’s members is higher, confirms that photovoltaic production is strong in the less developed areas of the

country. The role played by electricity consumption is controversial: Ec, positively affects Pps but negatively Ps;.

The most notable outcome is that solar photovoltaic energy shows a strong spatial dependence, both at production
and consumption levels. The logarithmic model enables to explain nearly the 53% of Pp; variance, but more than 18%

of the same variance is explained by the photovoltaic production in the surrounding areas of each province (Ppy.).
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Similarly, nearly 59% of Ps, variance is explained by the function based on natural logarithms, but Ps, ; explains up
to 31% of the same variance.

4. Conclusions

In this study, we demonstrate that spatial dependence is a key topic in the research strand that aims to delve into
the determinants of the transition to the renewables, specifically the solar photovoltaic energy. The results we
achieve pose at least two issues that call for further investigations. The first concerns the nonlinearity of the
relationships between dependent and independent variables, because the goodness of fit of the logarithmic functions
(0.53 < Adj. R* < 0.59) is higher than in the linear models (0.35 < Adj. R* < 0.37). The second issue consists of the
formulation of the proximity structure. The nearness between the units of observation may be measured using
several indicators, such as distances, shared boundaries, and so forth. Hence, it should be analyzed whether and how
much different nearness indicators lead to diverging results.
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