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Abstract 

In this contribution, three numerical models are considered and compared, with the main 

purpose of simulating the dynamic behavior of monolithic and multi-drum freestanding an-

cient stone columns. The behavior of such classical and historic structural elements, typical 

of the Mediterranean area and that are frequently subject to seismic actions, is characterized 

by a strong nonlinearity due to sliding and rocking. 

A simple and effective rigid beam model, able to numerically solve the equations of motion of 

the column also accounting for Housner’s hypotheses, is introduced for first and validated 

with respect to a software based on the Discrete Element Method (DEM), which has already 

proven its effectiveness in representing the behavior of columns and, more generally, masonry 

structures. Furthermore, a rigid block model accounting for the nonlinear behavior of the in-

terfaces between the blocks is considered. On one hand, the rigid models can represent col-

umns behavior with a not significant computational effort; on the other hand, the DEM is able 

to better describe the strong nonlinearity of columns behavior, with the detection of new con-

tacts and the results in terms of collapse mechanisms characterized by large displacements 

that may be experienced by the blocks during the dynamic excitations. 

In this contribution several preliminary comparisons between the models are carried on by 

considering a multi-drum column and an equivalent monolithic one subject to a set of har-

monic excitations with varying input frequency and acceleration amplitude. 
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1 INTRODUCTION 

Monolithic and multi-drum stone columns are structural elements typical of ancient tem-

ples that can be found in the Mediterranean area, thanks to the diffusion of Greek and Roman 

civilizations. In the original constructions, columns were connected by top beams in order to 

transfer vertical loads from the top roof to the ground; however, due to damage caused by his-

torical events and seismic events that struck the Mediterranean regions during their life, many 

columns are now free-standing and more prone to collapse for earthquake actions. 

Starting from the last century and until the current days, the analytical and numerical assess-

ment of monolithic and multi-drum column behavior has received particular attention. The 

pioneering analytical model proposed by Housner [5] studied the behavior and the possible 

overturning of a single rigid block subjected to horizontal excitations. Further research activi-

ties focused on studying the behavior of monolithic elements both numerically and experi-

mentally; as well as on the behavior of columns made of multi-drums (e.g. [1, 8, 10]). 

In these studies, the Discrete Element Method (DEM), initially introduced for the analysis of 

rock masses [7]. The advantage of the approach lies in its possibility to simulate each drum as 

an independent body, which can be subject to large displacements during an excitation. Ac-

cording to [1], although three-dimensional analysis can provide a more realistic and accurate 

representation of the dynamic behavior of ancient columns, two-dimensional analysis can still 

be performed using DEM since they are more time efficient and less sensitive to the contact 

parameters  

In this work, a new simple and effective numerical model for studying the dynamic behavior 

of both monolithic and multi-drum columns is proposed. The model considers a multi-drum 

column as an assemblage of vertically aligned rigid beam elements, where each drum is repre-

sented by a beam element and each contact is represented by a node. The dynamic equilibri-

um equation of the system is solved by means of a Runge-Kutta solver for ordinary 

differential equations accounting for a nonlinear moment-rotation law at each joint and with-

out considering sliding failure. 

The accuracy and effectiveness of the proposed model is validated by comparing its numerical 

results with those given by the two-dimensional DEM code UDEC [6]. A series of dynamic 

analyses were performed in which monolithic and multi-drum ancient columns subjected to 

different in frequency and amplitude harmonic excitations, as per [10]. Furthermore, a simpler 

comparison between the proposed rigid beam model and a rigid block model undertaken, for 

evaluating the influence of the no-sliding hypothesis in the numerical results. 

 

a  b  c  

Figure 1: Scheme of monolithic (a) and multi-drum (b) columns; freestanding columns in Athens Acropolis (c). 
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2 NUMERICAL MODELS 

As stated in the introduction, three numerical models are considered for studying the be-

havior of a monolithic column (Fig. 1a) and of an equivalent in size multi-drum column (Fig. 

1b). The models aim to simulate the behavior of free-standing columns typical of ancient 

Greek and Roman temples (Fig. 1c). 

2.1 Rigid Beam Model 

Let us consider a generic multi-drum column composed of n drums. Then a rigid beam 

model can be developed which is composed of n beam elements and n+1 nodes as shown in 

Fig. 2a, b. Each beam element represents a drum of the column and each node represents an 

interface between the drums. In particular, the first node/interface represents the contact be-

tween the ground and the first drum. Since the aim of this work is the assessment of columns 

behaviour subject to horizontal excitation, only horizontal translational degrees of freedom 

are considered, namely ui, iu , and iu  represent, respectively, nodal horizontal translation, ve-

locity and acceleration. It is worth noting that the proposed model is also able to describe the 

behavior of a monolithic column by setting n = 1. 

 
A 

 
b 

 
c 

Figure 2: Multi-drum column (a), corresponding rigid beam model (b), generic beam element (c). 

Each i-th beam element is characterized by a mass mi, which depends on material density and 

on the volume of the corresponding drum, which is considered for simplicity as a rectangular 

prism having an average width with respect to upper and lower drum width (Fig. 2a). Fur-

thermore, due to the rigid beam hypothesis, each element is subject to a rigid rotation depend-

ing on the horizontal end translations and beam height hi (Fig. 2c): 
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Internal forces of the beam are given by a shear force Ti, and a bending moment Mi, acting at 

each beam end (Fig. 2c); a normal force Ni is also present. The translational and rotational 

equations of motion for a beam element may be written as follows: 
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Where IGi is the polar inertia of the drum corresponding to the beam element. For simplicity, 

the static equilibrium in vertical direction, which allows to define normal forces as function of 

the gravity loads Pi, is not written in detail. Considering a column subject to a horizontal 

ground acceleration ag(t), equations of motion (2) are subject to the following boundary con-

ditions at column base and top nodes: 
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that allow to write in matrix compact form the two set of equations of motion (2) for the entire 

multi-drum column: 

 
a g

G g

 

  

T M u A

M GT I u B
 (4) 

In the equations above, vectors T and M collect shear forces and bending moments from node 

i to n: T = [T1 T2 … Tn]
T, M = [M1 M2 … Mn]

T; whereas vector u  collects horizontal accelera-

tions from node 2 to n+1: 
2 3 1[ ... ]T

nu u u u . Matrices Ma, G, and IG can be called, respec-

tively, mass coefficient matrix, geometric coefficient matrix, and polar inertia coefficient 

matrix. Vector Ag is characterized by null values except the first component, representing the 

acceleration at the base of the column: 1[ ( ) / 2 0 ... 0 0]T

g ga t mA ; and, similarly, 

1 1[ ( ) / 0 ... 0 0]T

g g Ga t I hB . Substituting the first of Eq. (4) into the second one, the system 

of differential equations to be solved for obtaining the displacements of the multi-drum col-

umn is: 

 ( ) a g G g   M θ GM u GA I u B  (5) 

Where each bending moment Mi in M depends on the rotation θi of the corresponding i-th 

drum (Eq. 1). The system of differential equations in (5) is solved by means of a Runge-Kutta 

ODE solver. At this stage, the nonlinear behavior that can affect the multi-drum column is the 

rocking phenomenon at each interface between the drums, whereas, following Housner’s hy-

pothesis, shear failure can not occur. The bending moment Mi at each interface must follow a 

bi- or tri-linear moment-rotation relationship, which represents the maximum stabilizing mo-

ment for varying block rotation (Fig. 3), and it is slightly modified with respect to Housner’s 

law by means of an initial elastic stiffness KM,i and a smoothing parameter ξ ≤ 1. 

   i
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Figure 3: Moment-rotation relationship. 
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The maximum stabilizing moment in Fig. 3 is given by: 
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where di is the width of the i-th drum, hence di/2 represents the maximum eccentricity of the 

normal force at the i-th joint. The angle αi represents the critical angle of the generic drum [5]. 

2.2 Discrete Element Model  

The DEM and, in particular, the computer code UDEC [6], have been successfully adopted 

by several researchers to study the dynamic behavior of monolithic and multi-drum columns 

[1, 3]. With UDEC, blocks can be modelled as rigid or deformable blocks. However, model 

movements are mainly given by the relative displacements between the blocks, rather than 

single block deformability. Blocks interact together by means of contact points, and the con-

tacts between the blocks are continuously detected during a dynamic analysis. Contact behav-

ior is characterized by normal and shear forces, fn and fs, with respect to contact surface 

orientation. Such forces in the elastic range are governed by a normal and a shear stiffness: 

 
n n n c
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where Δ denotes the increment of forces and relative normal and shear displacements (un, us) 

and Ac is the contact area. Assuming dry joints, only compressive normal forces are admitted, 

and the maximum shear force depend on the friction angle φ of the contact surface: fs,max = fn 

tan(φ). 

2.3 Rigid Block Model  

A rigid block model was also adopted for performing further numerical comparisons with 

the first two models. Rigid block models were introduced for representing in- and out-of-

plane elastic behavior of one-leaf masonry panels [11], and it has been extended accounting 

for material nonlinearity [12]. The model assumes blocks as rigid bodies; hence degrees of 

freedom are given by block center translations and block rigid rotation with respect to each 

center. The joints between the blocks are modelled as elastic-plastic one dimensional interfac-

es. Incremental interface actions, namely a normal and a shear force, (ΔFn, ΔFs), and a bend-

ing moment ΔM, depend on block relative displacements (Δun, Δus) and relative rotation Δθ 

and follow a Mohr-Coulomb yield criterion characterized, in this case, by a null cohesion and 

the same friction angle φ adopted with the DEM. Normal and shear elastic stiffness parame-

ters are assumed equal to those of the DEM multiplied for the entire joint area A, whereas the 

bending stiffness is equal to the normal stiffness multiplied for joint moment of inertia I: 
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It is worth noting that interface actions can be directly compared with the nodal forces of the 

rigid beam model. Furthermore, the bending stiffness and the moment-relative rotation law 

can be assumed coincident with those adopted with the rigid beam model, (Fig. 3). Recent 

developments of this model also allow to consider generic quadrilateral or polygonal rigid el-

ements [13]. Therefore, the actual trapezoidal section of the monolithic column and of each 

drum can be taken into account. 
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3 NUMERICAL TESTS 

A parametric investigation of the response of the columns subjected to harmonic excita-

tions in horizontal direction was performed. The case studies already considered in the recent 

contribution by Sarhosis et al. [10] were chosen. In particular, the monolithic column has a 

height (H) equal to 5 m, base width (B1) equal to 0.96 m and top width (B2) equal to 0.66 m. 

The multi-drum column has the same overall dimensions of the monolithic one and it is com-

posed of 12 equally spaced drums. Masonry density was taken as 1600 kg/m3 and the block 

elastic modulus as 2500 MPa. Also, the joint normal and shear stiffness was equal to 5×1010 

and 2.5×1010 N/m3, respectively. Results recently obtained with DEM are given by a set of 30 

different dynamic analyses with frequency varying from 0.66 to 4 Hz and base acceleration 

amplitude (a) varying from 0.1 g to 0.5 g. The rigid beam model allows to perform a larger set 

of analyses, in order to obtain a more accurate safe-unsafe domain for both column types. The 

rigid block model used herein to performing pushover analyses with forces equivalent to the 

horizontal excitation. 

3.1 Monolithic column subject to harmonic horizontal excitation 

Initially, numerical simulations were performed to assess the dynamic behavior of the 

monolithic column. Figs. 4 and 5 compare the base and top column displacements obtained 

with the rigid beam model and with the DEM model, respectively, for several acceleration 

amplitude and frequency values. Top displacements turn out to be in quite good agreement 

between the two models, even if the rigid beam model already shows a collapse with 0.66 Hz 

and 0.2 g. Base displacements obtained with the rigid beam model were generally larger than 

those obtained with the DEM model. Collapse mechanisms for this column type are not repre-

sented for simplicity, given that they are characterized by a simple overturning of the column. 
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Figure 4: Base (red continuous line) and top (black dashed line) displacements for a monolithic column subject 

to several harmonic excitations. Rigid beam model results. 
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Figure 5: Base (red continuous line) and top (black dashed line) displacements for a monolithic column subject 

to several harmonic excitations. DEM (UDEC) results. 

Fig. 6 compares the safe-unsafe domains obtained with the rigid beam model and the DEM 

model. Both domains show a collapse acceleration that increases for increasing input frequen-

cy. The small computational effort required by the rigid beam model allows to obtain a more 

accurate domain, with smaller collapse acceleration amplitudes with respect to the DEM for 

small input frequency values. However, further developments of this work will also try to de-

fine a more detailed safe-unsafe domain by means of the DEM. For decreasing input frequen-

cy, the collapse acceleration given by the rigid beam model is close to 0.16 g, slightly smaller 

than the collapse acceleration obtained with the rigid block model, equal to 0.205 g. Such dif-

ference is due to the approximated rectangular column shape assumed by the rigid beam mod-

el. 

 

 

Figure 6: Safe-unsafe domain for a monolithic column subject to harmonic excitations. Rigid beam model results 

(symbols and continuous line), DEM (UDEC) results (dashed line). 
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3.2 Multi-drum column subject to harmonic horizontal excitation 

A comparison of the dynamic behavior of the multi-drum column was also undertaken. 

The multi-drum column was subjected to different in amplitude and frequency harmonic loads. 

Figs. 7 and 8 present the base and top column displacements determined with the rigid beam 

model and with the DEM, respectively, for several acceleration amplitudes and input frequen-

cies. Base displacements obtained with the rigid beam model are generally larger than those 

obtained with the DEM model. In this case, it was found that the multi drum column analyzed 

using the rigid beam model is more prone to collapse with respect to the one analyzed using 

by the DEM model.  
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Figure 7: Base (red continuous line) and top (black dashed line) displacements for a multi-drum column subject 

to several harmonic excitations. Rigid beam model results. 

  0.66 Hz 1 Hz 2 Hz 

0
.2

 g
 

D
is

p
la

ce
m

en
t 

[m
] 

   

0
.4

 g
 

D
is

p
la

ce
m

en
t 

[m
] 

   

  Time [s] Time [s] Time [s] 

Figure 8: Base (red continuous line) and top (black dashed line) displacements for a multi-drum column subject 

to several harmonic excitations. DEM (UDEC) results. 
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The safe-unsafe domain of the multi-drum column modelled by rigid beams is shown in Fig. 9. 

For the development of the safe-unsafe graph, some DEM results were obtained from [10] in 

which the authors have carried out the analyses. Although there is a difference in the results 

obtain between the rigid block model and the DEM model, it shows that the multi-drum col-

umn modelled by rigid beams is subject to collapse for accelerations up to 0.2 g for frequen-

cies less than 1 Hz. In addition, for increasing input frequency, the collapse acceleration 

slightly increases up to 0.36 g with 2 Hz. The collapse accelerations turn out to be smaller 

than those obtained with the DEM. Such a difference is mainly given by the effect of sliding, 

which is neglected by the rigid beam model. The pushover analysis with the rigid block model 

is characterized by a collapse acceleration equal to that obtained in the previous case, accord-

ingly to the well-known hypothesis of monolithic behavior of a multi-drum column subject to 

static actions [14]. 

Focusing only on the proposed rigid beam model and comparing the safe-unsafe domains ob-

tained for the monolithic column and the equivalent multi-drum one, the former case turns out 

to be less prone to collapse with respect to the latter case. This aspect is not in agreement with 

the information obtained with the column types modelled by DEM, which are characterized 

by a smaller unsafe region of the domain with the multi-drum column. 

 

 

Figure 9: Safe-unsafe domain for a multi-drum column subject to harmonic excitations. Rigid beam model re-

sults (dashed line), DEM (UDEC) results (continuous). 

4 CONCLUSIONS  

A simple and effective rigid beam model for studying the dynamic behavior of freestand-

ing monolithic and multi-drum columns has been proposed. The model assumes each drum as 

a rigid beam element and each joint between the drums as a node able to move horizontally. 

The nonlinear behavior of the model is obtained by setting a bi or tri-linear moment-rotation 

nonlinear law. The rigid beam model turned out to be in sufficient agreement with the DEM 

assumed as reference for performing harmonic tests with varying acceleration amplitude and 

input frequency. The rigid beam model is characterized by larger base displacements with re-

spect to the DEM model and by a smaller safe domain for both column types, with small col-
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lapse acceleration values for decreasing frequency with respect to the DEM model. Also, the 

rigid block model, even if it has been adopted for simple pushover tests, shows an intermedi-

ate behavior between the DEM and the rigid beam model. In further developments of this 

contribution, harmonic tests will be performed also with the rigid block model. It is worth 

noting that the proposed analyses were limited to the 2D case. In particular, the 2D DEM 

model considered in this study assumes a unitary thickness of the column, leading to a rectan-

gular column cross-section. The proposed rigid beam model and the rigid block model, in-

stead, are able to account for the actual circular cross-section of the column, leading to more 

accurate results that can be compared with more complex 3D analyses. 

Further developments of the proposed rigid beam model will regard the use of real ground 

motions for performing numerical tests on monolithic and multi-drum columns. Results will 

be compared with existing numerical and laboratory results. Further developments of the pro-

posed rigid beam model will take into account the possible sliding between the drums, by as-

suming, for instance, a Mohr-Coulomb frictional law for restraining nodal shear actions and 

by allowing relative horizontal displacements at joint level. 
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