New substitution bases for complexity classes

Stefano Mazzanti

Dipartimento di Culture del Progetto

Università Iuav di Venezia

Fondamenta delle Terese 2206, 30123 Venezia, Italy

email: mazzanti@iuav.it

Abstract

The set $AC^{0}(F)$, the AC^{0} closure of F, is the closure with respect to substitution and concatenation recursion on notation of a set of basic functions comprehending the set F. By improving earlier work, we show that $AC^{0}(F)$ is the substitution closure of a simple function set and characterize well-known function complexity classes as the substitution closure of finite sets of simple functions.

1 Introduction

A finite function set F is a substitution basis for a function class G (and G is the substitution closure of F) when G can be defined using only the functions in F, the projection functions and the substitution operator. Several function classes like partial recursive functions, Grzegorczyk classes \mathcal{E}_n for $n \geq 2$ and polynomial time computable functions have a substitution basis, see [6] for a list of references. But such bases may contain awkward functions.

A nice example of basis for a non-trivial function class was given in [7, 8] where the set $\{x+y, x-y, x \land y, \lfloor x/y \rfloor, 2^{|x|^2}\}$ was shown to be a basis for the class TC^0 of functions computable by polysize, constant depth threshold circuits.¹

Subsequently, the existence of plain bases was considered for the set $AC^0(F)$, the closure with respect to substitution and concatenation recursion on notation (CRN) of a set of basic functions comprehending the set F.² In [5], it was shown that $AC^0(F)$ admits a basis, provided that it contains integer division. From this result, the above mentioned basis for TC^0 was obtained. Later, the existence of a basis for $AC^0(F)$ was stated without assuming any hypothesis and a basis for AC^0 was introduced [6].

However, the basis for TC^0 depends on the fact that integer division is in TC^0 , which is a hard result to show [4], and the basis for AC^0 contains some

 $^{{}^{1}}x \wedge y$ is the *bitwise and* of x and y. Names AC^{0}, TC^{0}, NC^{1} are usually intended to denote language classes. However, in this paper they will always denote function classes, since no misunderstanding is possible.

 $^{^{2}}AC^{0}(F)$ is an obvious extension of Clote's characterization of AC^{0} functions ([2]) obtained by adding the functions in F to the set of basic functions. For example, in [3] the set of TC^{0} functions has been defined as $AC^{0}(mult)$ where mult is the multiplication operation.

non-standard arithmetical functions which handle their arguments as sequence encodings.

This paper tries to eliminate these drawbacks and improves the results of [5] and [6]. New bases for AC^0, TC^0 and other complexity classes are obtained in a new, uniform and division-independent way by exploiting elementary properties of geometric series.

In the Preliminaries, the basic definitions and the main results of [5] and [6] are recalled.

Section 3 introduces a basis for $AC^0(F)$ that depends on a function parameter.

Then, by setting such function in two different ways, in Section 4 we obtain a new basis for $AC^0(F)$ which yields immediately a new basis for AC^0 , and in Section 5 we obtain two new bases for TC^0 .

Finally, following [6], we derive new bases for NC^1, L, P and PSPACE computable functions.

Even if the results of this paper may seem just aesthetic improvements, they shed some light on the difference between AC^0 and TC^0 and could possibly lead to a new, algebraic proof that $AC^0 \neq TC^0$. Indeed, both AC^0 and TC^0 have a basis of six functions which differ for one function only.

2 Preliminaries

In this paper, we will only consider functions with finite arity on the set $\mathbb{N} = \{0, 1, ...\}$ of natural numbers.

From now on, we agree that x, y, z, u, v, w, i, j, k, l, n, m, r range over \mathbb{N} , that a, b, c range over positive integers, that \mathbf{x}, \mathbf{y} range over sequences (of fixed length) of natural numbers, that p, q range over integer polynomials with non negative values and that f, g, h range over functions.

A function f is a polynomial growth function iff there is a polynomial p majorizing (the length of) f, i.e. such that $|f(\mathbf{x})| \leq p(|\mathbf{x}|)$ or, equivalently, $f(\mathbf{x}) < 2^{p(|\mathbf{x}|)}$ for any \mathbf{x} , where $|x_1, \ldots, x_n| = |x_1|, \ldots, |x_n|$ and $|x| = \lceil \log_2(x+1) \rceil$ is the number of bits of the binary representation of x.

We will use the following unary functions: the binary successor functions $s_0: x \mapsto 2x$ and $s_1: x \mapsto 2x+1$; the constant functions $C_y: x \mapsto y$; the signum function $sg: x \mapsto min(x, 1)$; the cosignum function $cosg: x \mapsto 1-sg(x)$; the quadratum function quad: $x \mapsto x^2$; length function len: $x \mapsto |x|$; the unary smash function us: $x \mapsto 2^{|x|^2}$; the next power of two function pow: $x \mapsto 2^{|x|}$.

We will also use the following functions: the addition function $add: x, y \mapsto x + y$; the multiplication function $mult: x, y \mapsto xy$; the modified subtraction function $sub: x, y \mapsto x - y = max(x - y, 0)$; the division function $quot: x, y \mapsto \lfloor x/y \rfloor$; the remainder function $rem: x, y \mapsto x - y \lfloor x/y \rfloor$; the conditional function

$$cond(x, y, z) = \begin{cases} y & \text{if } x = 0 \\ z & \text{otherwise} \end{cases}$$

the bit function $bit : x, y \mapsto rem(\lfloor x/2^y \rfloor, 2)$; the multiplication by a power function $multp : x, y \mapsto x2^{|y|}$; the concatenation function $conc : x, y \mapsto x * y = x2^{|y|} + y$; the smash function smash $: x, y \mapsto x\#y = 2^{|x| \cdot |y|}$; the most significant part function $MSP : x, y \mapsto \lfloor x/2^y \rfloor$; the log most

significant part function $msp : x, y \mapsto \lfloor x/2^{|y|} \rfloor$; the least significant part function $LSP : x, y \mapsto rem(x, 2^y)$; the log least significant part function $lsp : x, y \mapsto rem(x, 2^{|y|})$. A fundamental role will be played by the bitwise and function $and : x, y \mapsto x \wedge y$ such that $bit(x \wedge y, i) = bit(x, i) \cdot bit(y, i)$ for any *i*.

For l, n > 0, let $\langle x_n, \ldots, x_1; l \rangle = \sum_{i < n} x_{i+1} 2^{li}$; if $x_n, \ldots, x_1 < 2^l$ then x_n, \ldots, x_1 are the base 2^l digits of $\langle x_n, \ldots, x_1; l \rangle$. Then, we will also use the functions arl, ar2l, repl, convl such that

$$arl(l) = \sum_{i < |l|} i2^{|l|i},$$

$$ar2l(l) = \sum_{i < |l|} i^2 2^{|l|i},$$

$$repl(x, l, n) = \sum_{i < |n|} rem(x, 2^{|l|})2^{|l|i}$$

$$convl(x, l, r, n) = \sum_{i < |n|} rem(x_{i+1}, 2^{|r|})2^{|r|i}$$

where $x_{|n|}, \ldots, x_1$ are the |n| least significant base $2^{|l|}$ digits of x. All the functions above return 0 when one of l, r, n is 0.

Note that

$$repl(x, l, n) = \left\langle \overbrace{x, \dots, x}^{|n|-times}; |l| \right\rangle$$

for $x < 2^{|l|}$ and

$$convl(\langle \mathbf{x}; \left| l \right| \rangle, l, r, n) = \langle \mathbf{x}; \left| r \right| \rangle$$

where $\mathbf{x} = x_{|n|}, ..., x_1$ with $x_i < 2^{\min(|l|, |r|)}$ for $1 \le i \le n$.

As usual, the characteristic function of a predicate Q on natural numbers is the function $f(\mathbf{x})$ returning 1 if $Q(\mathbf{x})$ is true, 0 otherwise. We say that a predicate is in a class F of functions, meaning that its characteristic function is in F.

 Let

$$rp(x,l,n) = \begin{cases} x \cdot \sum_{i < |n|} 2^{|l|i} & \text{if } AC^0_SUM(x,l,n) \\ 0 & \text{otherwise} \end{cases}$$

where

$$AC^0_SUM(x,l,n) \Leftrightarrow (ln>0) \land (\bigvee_{i=1}^3 P_i(x,l,n))$$

and P_1, P_2 , and P_3 are respectively the following predicates

$$\begin{split} P_1(x,l,n) &\Leftrightarrow x = \left\langle \overbrace{1,\ldots,1}^{|l|-times}; |l| \right\rangle \wedge 1 < l, \\ P_2(x,l,n) &\Leftrightarrow x = \left\langle |l| - 1,\ldots,1,0; |l| \right\rangle \wedge 1 < l, \\ P_3(x,l,n) &\Leftrightarrow x < 2^{|l||n|} \wedge \forall_{i < j < |n|} (x2^{|l|i} \wedge x2^{|l|j} = 0). \end{split}$$

As we will see in Section 4, the predicate AC^0_SUM guarantees that the function rp is in AC^0 , even if $x \cdot \sum_{i < |n|} 2^{|l|i}$ is in $TC^0 - AC^0$.

Finally, we will use the following operators on functions:

- the substitution operator $SUBST(g_1, \ldots, g_b, h)$ transforming functions $g_1, \ldots, g_b : \mathbb{N}^a \to \mathbb{N}$ and function $h : \mathbb{N}^b \to \mathbb{N}$ into the function $f : \mathbb{N}^a \to \mathbb{N}$ such that $f(\mathbf{x}) = h(g_1\mathbf{x}, \ldots, g_b\mathbf{x});$
- the concatenation recursion on notation operator $CRN(g, h_0, h_1)$ transforming functions $h_0: \mathbb{N}^{a+1} \to \mathbb{N}$ and $h_1: \mathbb{N}^{a+1} \to \mathbb{N}$ with values in $\{0, 1\}$ and function $g: \mathbb{N}^a \to \mathbb{N}$ into the function $f: \mathbb{N}^{a+1} \to \mathbb{N}$ such that

$$f(0, \mathbf{y}) = g(\mathbf{y}),$$

$$f(s_i(x), \mathbf{y}) = s_{h_i(x, \mathbf{y})}(f(x, \mathbf{y}))$$

where in the second equation $i \in \{0, 1\}$ and x > 0 when i = 0.

For any set F of functions, let $\operatorname{clos}_{SUBST}(F)$ be the closure under substitution of $F \cup I$ where I is the set of the projection functions

$$I^{a}[i]: x_{1}, \dots, x_{a} \longmapsto x_{i} \quad (1 \le i \le a)$$

with any arity a. In the following, we will abuse the notation above as usual and we will write $\operatorname{clos}_{SUBST}(f_1, \ldots, f_n, G)$ when $F = \{f_1, \ldots, f_n\} \cup G$ (the sequence f_1, \ldots, f_n may be empty and the set G may be omitted).

For any set F of polynomial growth functions, we define $AC^0(F)$, the AC^0 closure of F, as the closure under substitution and CRN of $\{C_0, s_0, s_1, smash, len, bit\} \cup F \cup I^3$.

The class AC^0 of functions computable by polysize, constant depth, unbounded fan-in Boolean circuits, the class TC^0 of functions computable by polysize, constant depth, unbounded fan-in threshold circuits, the class NC^1 of functions computable by polysize, logarithmic depth, bounded fan-in Boolean circuits have been characterized using substitution and CRN [1, 2, 3]:

$$AC^0 = AC^0(\emptyset), \ TC^0 = AC^0(mult), \ NC^1 = AC^0(tree)$$

where *tree* is a unary function taking values in $\{0, 1\}$ such that tree(x) is the value of the and/or tree with or gate at the root represented by x when $|x| = 4^n + 1 > 1$. E.g. for $x = 10110_2$ we have $tree(x) = 0 = (0 \land 1) \lor (1 \land 0)$. For a definition of *tree* see [1] or the Appendix of [5].

If F is a class of functions such that $F = \operatorname{clos}_{SUBST}(f_1, \ldots, f_a)$ then $\{f_1, \ldots, f_a\}$ is a (substitution or superposition) basis for F and F is the substitution closure of $\{f_1, \ldots, f_a\}$.

tution closure of $\{f_1, \ldots, f_a\}$. For any function $f : \mathbb{N}^a \longrightarrow \mathbb{N}$, we define the function f^{\dagger_c} , the canonical dagger of f, by setting $f^{\dagger_c}(x_1, \ldots, x_a, l, n) = 0$ if l = 0 or n = 0 or $x_i \ge 2^{|l||n|}$ for some $1 \le i \le a$ and

$$f^{\uparrow_{c}}(x_{1},\ldots,x_{a},l,n) = \left\langle rem(f(x_{1,|n|},\ldots,x_{a,|n|}),2^{|l|}),\ldots,rem(f(x_{1,1},\ldots,x_{a,1}),2^{|l|});|l|\right\rangle$$

³See [6] for a discussion about the relationship of our definition of $AC^{0}(F)$ and similar definitions given in the literature.

when $l, n > 0, x_1 = \langle x_{1,|n|}, \dots, x_{1,1}; |l| \rangle, \dots, x_a = \langle x_{a,|n|}, \dots, x_{a,1}; |l| \rangle$ and $x_{i,j} < 2^{|l|}$ for $1 \le i \le a$ and $1 \le j \le |n|$. Note that the equation above reduces to

$$f^{\dagger_{c}}(x_{1},\ldots,x_{a},l,n) = \left\langle f(x_{1,|n|},\ldots,x_{a,|n|}),\ldots,f(x_{1,1},\ldots,x_{a,1});|l|\right\rangle$$

if $f(x_{1,j}, \ldots, x_{a,j}) < 2^{|l|}$ for $1 \le j \le |n|.^4$ In [5], the following result has been obtained.

Quotient Basis Theorem. For any set F of polynomial growth functions, if $quot \in AC^0(F)$ then

$$AC^{0}(F) = clos_{SUBST}(add, sub, and, quot, us, F^{\dagger_{c}})$$

where $F^{\dagger_c} = \{ f^{\dagger_c} | f \in F \}.$

The theorem above enabled us to show that $\{add, sub, and, quot, us\}$ is a basis for TC^0 by noting that $quad^{\dagger c} \in clos_{SUBST}(add, sub, and, quot, us)$ and to show that $\{add, sub, and, quot, us, tree^{\dagger_c}\}$ is a basis for NC^1 .

Later, in [6], we improved the method of CRN elimination introduced in [5] and proved the following Quotient-free Basis Theorem which states that, for any finite set F of polynomial growth functions, the set $AC^{0}(F)$ has a basis. From the Quotient-free Basis Theorem we obtained a new basis for AC^0 by setting $F = \emptyset.$

Quotient-Free Basis Theorem. For any set F of polynomial growth functions,

 $AC^{0}(F) = \operatorname{clos}_{SUBST}(C_{1}, add, sub, and, conc, len, msp, ar2l, repl, convl, F^{\dagger_{c}}).$

In this paper we will show the following improved version of the Quotient-free Basis Theorem.

Improved Quotient-free Basis Theorem. For any set F of polynomial growth functions,

 $AC^{0}(F) = \operatorname{clos}_{SUBST}(C_{1}, add, sub, and, msp, rp, F^{\dagger_{c}}).$

The Improved Quotient-free Basis Theorem yields immediately a new basis for AC^0 .

Corollary 1. $AC^0 = clos_{SUBST}(C_1, add, sub, and, msp, rp).$

Moreover, we will state the following characterizations of TC^0 .

Theorem 2.

$$TC^{0} = \operatorname{clos}_{SUBST}(C_{1}, add, sub, and, msp, x \cdot \sum_{i < |n|} 2^{|l|i})$$

= $\operatorname{clos}_{SUBST}(C_{1}, add, sub, and, msp, \sum_{i < |n|} 2^{|l|i}, quad).$

⁴See [6] for a full account about dagger operators.

3 A parametric Quotient-free Basis Theorem for $AC^0(F)$

Let rpt be any function such that

$$rpt(x,l,n) = rp(x,l,n) = x \cdot \sum_{i < |n|} 2^{|l|i}$$

when $AC^0_SUM(x, l, n)$ is true. In this section, for any set F of polynomial growth functions, we will show that

 $AC^{0}(F) \subseteq \operatorname{clos}_{SUBST}(C_{1}, add, sub, and, msp, rpt, F^{\dagger_{c}})$

and if $rpt \in AC^0(F)$ then

$$AC^{0}(F) = \operatorname{clos}_{SUBST}(C_{1}, add, sub, and, msp, rpt, F^{\dagger_{c}}).$$

The basic idea of the proof is that the functions repl, arl, ar2l and convl are special instances of $x \cdot \sum_{i < |n|} 2^{|l|i}$ and can be obtained from rpt(x, l, n) by substituting a suitable AC^0 function for x.

A normal function class is a function class closed with respect to substitution which contains the function set $I \cup \{C_1, add, sub, and, msp, rpt\}$. Moreover, a function is normal iff it belongs to every normal class or, equivalently, iff it belongs to $clos_{SUBST}(C_1, add, sub, and, msp, rpt)$.

In the following, we will show that repl, arl, ar2l and convl are normal functions and so by the Quotient-free Basis Theorem, any normal function class contains $AC^0(F)$ if it contains $F^{\dagger c}$.

Lemma 3. If $x < 2^{|l|}$ then $\forall_{i < j < |n|} (x2^{|l|i} \wedge x2^{|l|j} = 0)$ and

$$rpt(x,l,n) = \left\langle \overbrace{x,\ldots,x}^{|n|-times}; |l| \right\rangle.$$

Lemma 4. The following functions are normal: C_n for any n, $sg, cosg, s_0, s_1, pow, smash, 2^{|x|-|y|}, multp, conc, lsp, and for any polynomial <math>p$, $2^{p(|\mathbf{x}|)}$.

Proof. The proof is similar to that of Lemma 3 in [6]. Note first that

$$C_0(x) = C_1(x) \dot{-} C_1(x), C_{n+1}(x) = C_n(x) + C_1(x)$$

and

$$cosg(x) = C_1(x) \dot{-} x, sg(x) = cosg(cosg(x)).$$

Then,

$$\begin{split} s_0(x) &= x + x, \, s_1(x) = s_0(x) + C_1(x), \\ pow(x) &= 2^{|x|} = cosg(x) + (rpt(1, x, 2) - 1), \\ smash(x, y) &= 2^{|x||y|} = rpt(2^{|x|} - 1, x, y) + 1, \\ max(x, y) &= (x - y) + y, \\ x2^{|\max(x,y)|} &= rpt(x, \max(x, y), 2) - x, \\ 2^{|x| - |y|} &= \left\lfloor 2^{|x|}/2^{|y|} \right\rfloor + sg(|y| - |x|) = msp(2^{|x|}, 2^{|y|} - 1) + sg(2^{|x|} - 2^{|y|}) \\ multp(x, y) &= \left\lfloor x2^{|\max(x,y)|}/2^{|x| - |y|} \right\rfloor = msp(x2^{|\max(x,y)|}, 2^{|x| - |y|} - 1), \\ conc(x, y) &= multp(x, y) + y, \\ lsp(x, y) &= x - multp(msp(x, y), y). \end{split}$$

The function $2^{p(|\mathbf{x}|)}$ is normal for all polynomials p with non negative coefficients, because the function $2^{p(|\mathbf{x}|)}$ can be obtained from the normal functions 2^c and $2^{|x|}$ by a finite number of applications of the two equations $2^{p(|\mathbf{x}|)q(|\mathbf{y}|)} = (2^{p(|\mathbf{x}|)} - 1) \#(2^{q(|\mathbf{y}|)} - 1)$ and $2^{p(|\mathbf{x}|)+q(|\mathbf{y}|)} = 2^{|(2^{p(|\mathbf{x}|)}-1)*(2^{q(|\mathbf{y}|)}-1)|}$. Moreover, $2^{p(|\mathbf{x}|)}$ is normal even for any integer polynomial p with non negative values. Indeed, p can be expressed as the modified subtraction of two polynomials q, q' with non negative coefficients such that $q(|\mathbf{x}|) \ge q'(|\mathbf{x}|)$ and we obtain that $2^{p(|\mathbf{x}|)} = 2^{q(|\mathbf{x}|)-q'(|\mathbf{x}|)} = msp(2^{q(|\mathbf{x}|)}, 2^{q'(|\mathbf{x}|)} - 1) + sg(2^{q(|\mathbf{x}|)}-2^{q'(|\mathbf{x}|)})$.

Lemma 5. Function cond is normal.

Proof. By Lemma 4 the function $2^{|y|+|z|}$ is normal. Then, also the function

$$f(x, y, z) = rpt(sg(x), 1, 2^{|y|+|z|} - 1) = \begin{cases} 0 & \text{if } x = 0, \\ 2^{|y|+|z|} - 1 & \text{otherwise} \end{cases}$$

is normal. The lemma follows immediately by noting that

$$cond(x, y, z) = and(f(x, y, z), z) + and(f(cosg(x), y, z), y).$$

Any normal class is closed with respect to definition by cases and contains the predicates generated by the standard comparison predicates and the Boolean connectives.

Lemma 6. Any normal class is closed with respect to definition by cases.

Proof. Assume that C is a normal class and $f_1, \ldots, f_{a+1} \in C$. Let $g_1, \ldots, g_a \in C$ be the characteristic functions of Q_1, \ldots, Q_a , respectively. The lemma follows immediately from Lemma 5 because the function

$$f(\mathbf{x}) = \begin{cases} f_1(\mathbf{x}) & \text{if } Q_1(\mathbf{x}), \\ \dots & \dots \\ f_a(\mathbf{x}) & \text{if } Q_a(\mathbf{x}), \\ f_{a+1}(\mathbf{x}) & \text{otherwise} \end{cases}$$

can be defined as

$$f(\mathbf{x}) = cond(g_1(\mathbf{x}), cond(\ldots cond(g_a(\mathbf{x}), f_{a+1}(\mathbf{x}), f_a(\mathbf{x}))\ldots), f_1(\mathbf{x})).$$

Lemma 7. The predicates of a normal class are closed with respect to conjunction, disjunction, and negation.

Proof. Assume that C is a normal class and let $g_1 \in C$ and $g_2 \in C$ be the characteristic functions of predicates Q_1 and Q_2 , respectively. Then, $cosg(g_1(x))$, $cond(g_1(x), C_0(x), cond(g_2(x), C_0(x), C_1(x)))$ and $cond(g_1(x), cond(g_2(x), C_0(x), C_1(x)), C_1(x))$ are the characteristic functions of $\neg Q_1, Q_1 \land Q_2$ and $Q_1 \lor Q_2$, respectively. The lemma follows immediately from Lemma 4 and Lemma 5.

Lemma 8. The comparison predicates $x < y, x \le y, x > y, x \ge y, x = y, x \ne y$ are normal.

Proof. Note that $x > y \Leftrightarrow sg(x-y) = 1$ and $x = y \Leftrightarrow cosg((x-y) + (y-x)) = 1$. The remains predicates can be defined using the Boolean operations and the lemma follows from Lemma 7.

Lemma 9. Function repl is normal.

Proof. Since $lsp(x, l) = rem(x, 2^{|l|}) < 2^{|l|}$, by Lemma 3

$$repl(x, l, n) = \left\langle \overbrace{rem(x, 2^{|l|}), \dots, rem(x, 2^{|l|})}^{|n|-times}; |l| \right\rangle$$
$$= \begin{cases} rpt(lsp(x, l), l, n) & \text{if } (l > 0) \land (n > 0), \\ 0 & \text{otherwise} \end{cases}$$

The lemma follows immediately by Lemmata 6-8.

$$\square$$

 \square

Lemma 10. If $\sum_{j=1}^{N} x_j < 2^L$ then $\left\langle \sum_{j=N-1}^{N} x_j, \dots, \sum_{j=2}^{N} x_j, \sum_{j=1}^{N} x_j, \dots, \sum_{j=1}^{1} x_j; L \right\rangle = \langle x_N, \dots, x_1; L \rangle \cdot \sum_{i < N} 2^{Li}.$

Lemma 11. Functions arl and |x| are normal.

Proof. Set L = |l| and consider the normal function f(l) = rpt(rpt(1, l, l), l, l). By definition of rpt and Lemma 10

$$f(l) = \left\langle \overbrace{1,\ldots,1}^{L-times}; L \right\rangle \cdot \sum_{i < L} 2^{Li} = \left\langle 1,\ldots,L-1,L,L-1,\ldots,1;L \right\rangle$$

Therefore, $arl(l) = lsp(f(l), 2^{|l|^2} - 1) \dot{-}rpt(1, l, l)$ because $lsp(f(l), 2^{|l|^2} - 1) = \langle L, \ldots, 1; L \rangle$ and arl is normal because $lsp(x, 2^{|l|^2} - 1)$ is normal by Lemma 4. Finally, $|x| = lsp(msp(f(x), 2^{|x|^2 \dot{-}|x|} - 1), x)$ and |x| is normal because $lsp, 2^{|x|^2 \dot{-}|x|}$ and $2^{|x|}$ are normal by Lemma 4.

Lemma 12. Function ar2l is normal.

Proof. Set L = |l| and consider the function f(l) = rpt(arl(l), l, l). By definition of rpt and Lemma 10

$$\begin{split} f(l) &= \left< \dot{L-1}, \dots, 1, 0; L \right> \cdot \sum_{i < L} 2^{Li} \\ &= \left< t_{L-1} \dot{-} t_{L-2}, \dots, t_{L-1} \dot{-} t_2, t_{L-1} \dot{-} t_1, t_{L-1}, \dots, t_1, t_0; L \right> \end{split}$$

where $t_n = \frac{n(n+1)}{2}$ is the *n*-th triangular number. Now, since $2t_n - n = n^2$, we obtain $ar2l(l) = 2 \cdot lsp(f(l), 2^{|l|^2} - 1) \dot{-}arl(l)$ because $lsp(f(l), 2^{|l|^2} - 1) = \langle t_{L\dot{-}1}, \ldots, t_1, t_0; L \rangle$ and ar2l is normal because arland $lsp(x, 2^{|l|^2} - 1)$ are normal by the lemma above and Lemma 4.

The function $incr(x,l,r,n) = rpt(x,2^{|r|-|l|},n) \wedge rpt(2^{|l|}-1,r,n)$ has been introduced in [8]. The following lemma is analogous to Lemma 2.10 of [5] and Statement 1.1.4.3 of [8].

Lemma 13. If l, n > 0, $|r| \ge (|n|+1)|l|$ and $x_{|n|}, \ldots, x_1 < 2^{|l|}$ then

$$incr(\langle x_{|n|},\ldots,x_1;|l|\rangle,l,r,n)=\langle x_{|n|},\ldots,x_1;|r|\rangle$$

Lemma 14. Function incr is normal.

Proof. The lemma follows immediately from Lemma 4.

Lemma 15. Function convl is normal.

Proof. Set L = |l|, R = |r| and N = |n|. We first define a function decr such that $decr(\langle x_N, \ldots, x_1; L \rangle, l, r, n) = \langle x_N, \ldots, x_1; R \rangle$ provided that R < L and $x_N, \dots, x_1 < 2^R.$ For $x = \langle x_N, \dots, x_1; L \rangle$, we have

$$incr(x, l, 2^{L(N+1)+R} - 1, n) = \langle x_N, \dots, x_2, x_1; L(N+1) + R \rangle$$
$$= \langle x_N 2^{R(N-1)}, \dots, x_2 2^R, x_1; L(N+1) \rangle$$

by Lemma 13 and Lemma 20 of [6]. Now, for $y = \langle x_N 2^{R(N-1)}, \dots, x_2 2^R, x_1; L(N+1) \rangle$, we have

$$i < j < N \Rightarrow y2^{L(N+1)i} \wedge y2^{L(N+1)j} = 0$$

because

$$bit(y2^{L(N+1)i},k) = \begin{cases} 0 & \text{if } k < L(N+1)i \\ bit(x_q2^{Rq},s) & \text{otherwise} \end{cases}$$

where

$$q = \lfloor k - L(N+1)i \rfloor / L(N+1) \rfloor = \lfloor k/L(N+1) \rfloor - i$$

and

$$s = rem(k - L(N + 1)i), L(N + 1)) = rem(k, L(N + 1))$$

$$bit(y2^{L(N+1)i}, k) = bit(y2^{L(N+1)j}, k) = 1$$

then

So, if

$$bit(x_q 2^{Rq}, s) = bit(x_p 2^{Rp}, s) = 1$$

with p < q. But this means that $Rp \le s < Rp + R$ and $Rq \le s < Rq + R$ which implies $s < R(p+1) \le Rq \le s$, a contradiction.

Therefore, by Lemma 10, the function

$$f(x, l, r, n) = rpt(incr(x, l, 2^{L(N+1)+R} - 1, n), 2^{L(N+1)} - 1, n)$$

satisfies the following equations

$$f(\langle \mathbf{x}; L \rangle, l, r, n) = \left\langle x_N 2^{R(N-1)}, \dots, x_2 2^R, x_1; L(N+1) \right\rangle \cdot \sum_{i < N} n 2^{L(N+1)i}$$
$$= \left\langle \left\langle x_N \overbrace{0, \dots, 0}^{N-1}; R \right\rangle, \dots, \left\langle x_N, \dots, x_2, 0; R \right\rangle,$$
$$\left\langle x_N, \dots, x_1; R \right\rangle, \dots, \left\langle \overbrace{0, \dots, 0}^{N-1}, x_1; R \right\rangle; L(N+1) \right\rangle$$

where $\mathbf{x} = x_N, \ldots, x_1$. Then, for

$$decr(x, l, r, n) = lsp(msp(f(x, l, n), 2^{L(N+1)(N-1)} - 1), 2^{RN} - 1)$$

we have $decr(\langle x_N, \ldots, x_1; L \rangle, l, r, n) = \langle x_N, \ldots, x_1; R \rangle$. Moreover, decr is normal because $2^{L(N+1)(N-1)} - 1$ and $2^{RN} - 1$ are normal by Lemma 4 and f is normal by Lemma 14 and Lemma 4.

Furthermore, define the function

$$trim(x,l,r,n) = \begin{cases} x \wedge rpt(2^R - 1, l, n) & \text{if } L \ge R > 0, \\ 0 & \text{otherwise.} \end{cases}$$

and note that for $R \leq L$ we have

$$trim(x, l, r, n) = \left\langle rem(x_N, 2^R), \dots, rem(x_1, 2^R); L \right\rangle$$

where x_N, \ldots, x_1 are the N least significant base 2^L digits of x. Finally, from Lemma 13 we have

$$convl(x, l, r, n) = \begin{cases} decr(incr(trim(x, l, l, n), l, 2^{R(N+1)} - 1, n), \\ 2^{R(N+1)} - 1, r, n) & \text{if } R > L > 0, \\ decr(trim(x, l, r, n), l, r, n) & \text{if } L > R > 0, \\ trim(x, l, r, n) & \text{if } L = R > 0, \\ 0 & \text{otherwise.} \end{cases}$$

and the functions trim and convl are normal by Lemmata 6-8 because incr and decr are normal. $\hfill \Box$

Lemma 16. For any set F of polynomial growth functions and any normal class C, if $F^{\dagger_c} \subseteq C$ then $AC^0(F) \subseteq C$.

Proof. By lemmata 4, 11, 9, 12 and 15 we have $conc, len, repl, ar2l, convl \in C$ and so $clos_{SUBST}(C_1, add, sub, and, conc, len, msp, ar2l, repl, convl, F^{\dagger c}) \subseteq C$. The lemma follows immediately from the Quotient-free Basis Theorem of [6]. \Box

Corollary 17. For any set F of polynomial growth functions,

 $AC^{0}(F) \subseteq \operatorname{clos}_{SUBST}(C_{1}, add, sub, and, msp, rpt, F^{\dagger_{c}}).$

Proof. By definition, $\operatorname{clos}_{SUBST}(C_1, add, sub, and, msp, rpt, F^{\dagger_c})$ is a normal class which contains F^{\dagger_c} .

Theorem 18 (Parametric Quotient-Free Basis Theorem). For any set F of polynomial growth functions, if $rpt \in AC^0(F)$ then

$$AC^{0}(F) = \operatorname{clos}_{SUBST}(C_{1}, add, sub, and, msp, rpt, F^{\dagger_{c}}).$$

Proof. Note that C_1 , add, sub, and, $msp \in AC^0$, moreover $rpt \in AC^0(F)$ by hypothesis and $F^{\dagger_c} \subseteq AC^0(F)$ by Lemma 8 of [6].

4 A new basis for $AC^0(F)$

In this section we will prove the Improved Quotient-free Basis Theorem. In order to do so, we just need to show that $rp \in AC^0$ and to set rpt = rp in Theorem 18.

Lemma 19. $rp(x, l, n) \in AC^{0}$.

Proof sketch. Recall that the predicate $AC^0_SUM(x, l, n)$ introduced in the Preliminaries is defined as

$$AC^0_SUM(x,l,n) \Leftrightarrow (ln > 0) \land (P_1(x,l,n) \lor P_2(x,l,n) \lor P_3(x,l,n))$$

are P_1, P_2 and P_3 are mutually disjoint AC^0 predicates. We show that rp can be defined by cases. Indeed, there are functions h_1, h_2 and h_3 in AC^0 such that $rp(x, l, n) = h_i(x, l, n)$ if $P_i(x, l, n) \wedge ln > 0$ is true. We assume that ln > 0 and set L = |l| and N = |n|.

First, assume that $P_1(x, l, n)$ is true. Then $x = \left\langle \overbrace{1, \dots, 1}^{L-times}; L \right\rangle \land (1 < l)$ and

$$\begin{aligned} rp(x,l,n) &= \left\langle 1, \dots, L\dot{-}1, L, L\dot{-}1, \dots, 1; L \right\rangle \\ &= \left\langle 1, \dots, L\dot{-}1, L; L \right\rangle \cdot 2^{L(L-1)} + \left\langle L\dot{-}1, \dots, 1; L \right\rangle \\ &= (repl(L,l,l)\dot{-}arl(l)) \cdot 2^{L(L-1)} + msp(arl(l),l). \end{aligned}$$

Assume that $P_2(x, l, n)$ is true and recall that $2t_m = m(m+1)$. Then $x = \langle L - 1, \dots, 1, 0; L \rangle \land (1 < l)$ and

$$\begin{split} rp(x,l,n) &= \left\langle t_{L-1} \dot{-} t_{L-2}, \dots, t_{L-1} \dot{-} t_2, t_{L-1} \dot{-} t_1, t_{L-1}, \dots, t_1, t_0; L \right\rangle \\ &= \left\langle t_{L-1} \dot{-} t_{L-2}, \dots, t_{L-1} \dot{-} t_2, t_{L-1} \dot{-} t_1; L \right\rangle \cdot 2^{L(L-1)} + \left\langle t_{L-1}, \dots, t_1, t_0; L \right\rangle \\ &= (repl(t_{L-1}, l, \lfloor l/2 \rfloor) \dot{-} T(\lfloor l/2 \rfloor)) \cdot 2^{L(L-1)} + T(l) \end{split}$$

where $T(l) = \lfloor (ar2l(l) + arl(l))/2 \rfloor = \langle t_{L-1}, \ldots, t_0; L \rangle$ belongs to AC^0 by Lemma 10 and Lemma 19 of [6].

Assume that $P_3(x, l, n)$ is true and recall that this is equivalent to

 $x < 2^{|l||n|} \ \land \ \forall_{i < j < |n|} \ (x 2^{|l|i} \land x 2^{|l|j} = 0).$

Then, for any k < 2|l||n| there is at most one index i < N such that $bit(x2^{|l|i}, k) = 1$ and so, no carry is generated in the computation of $\sum_{i < |n|} x2^{|l|i}$. Therefore,

$$rp(x,l,n) = x \cdot \sum_{i < |n|} 2^{|l|i} = \sum_{i < |n|} x 2^{|l|i} = \bigvee_{i < |n|} x 2^{|l|i}$$

where $\bigvee_{i < |n|} f(x, i)$ is defined as

$$bit(\bigvee_{i < |n|} f(x,i), j) = 1 \Leftrightarrow \exists_{i < |n|} bit(f(x,i), j) = 1$$

and belongs to AC^0 because AC^0 is closed with respect to sharply bounded quantifiers, see [2].

Concluding, rp is defined by cases from AC^0 functions and predicates and so it belongs to AC^0 .

We apply now Theorem 18 to obtain the Improved Quotient-free Basis Theorem.

Theorem 20. For any set F of polynomial growth functions,

$$AC^{0}(F) = \operatorname{clos}_{SUBST}(C_{1}, add, sub, and, msp, rp, F^{\dagger_{c}}).$$

Proof. Set rpt = rp in Theorem 18. The theorem follows immediately from Lemma 19.

Corollary 21. $AC^0 = \operatorname{clos}_{SUBST}(C_1, add, sub, and, msp, rp).$

5 New bases for TC^0

In this section we show that both $\{C_1, add, sub, and, msp, \sum_{i < |n|} 2^{|l|i}, quad\}$ and $\{C_1, add, sub, and, msp, x \cdot \sum_{i < |n|} 2^{|l|i}\}$ are bases for TC^0 . This result is independent from the striking result of [4], namely integer division is in TC^0 , which was used in [7] to introduce the first basis for TC^0 . The new bases are obtained as another application of Theorem 18.

Lemma 22.

$$\{xy, x \cdot \sum_{i < |n|} 2^{|l|i}\} \cup AC^0 \subseteq \operatorname{clos}_{SUBST}(C_1, add, sub, and, msp, \sum_{i < |n|} 2^{|l|i}, quad).$$

Proof. Note first that $xy = (x + y)^2 - x^2 - y^2$. The lemma follows from Corollary 17 by setting $F = \emptyset$ and $rpt(x, l, n) = x \cdot \sum_{i < |n|} 2^{|l|i}$.

Now, we show that

$$quad^{\dagger_c} \in \operatorname{clos}_{SUBST}(C_1, add, sub, and, msp, \sum_{i < |n|} 2^{|l|i}, quad).$$

By Theorem 18, this implies that $\{C_1, add, sub, and, msp, \sum_{i < |n|} 2^{|l|i}, quad\}$ is a basis for TC^0 .

Lemma 23 (Lemma 3.4 of [5]). $x^2 = \sum_{i < |x|, bit(x,i)=1} (2 \cdot 4^i \cdot MSP(x,i) - 4^i).$

Proof. By induction on x, using the following definition of the quadratum function:

$$0^{2} = 0$$

(2y)² = 4y²
(2y + 1)² = 4y² + 4y + 1.

Lemma 24. $quad^{\dagger_c} \in clos_{SUBST}(C_1, add, sub, and, msp, \sum_{i < |n|} 2^{|l|i}, quad).$

Proof. Set R = |r| and N = |n|. Let $\mathbf{x} = x_N, \ldots, x_1$ and assume that $x_j^2 < 2^R$ for any $1 \le j \le N$. Consider the function

$$f(x,y) = \begin{cases} 2\mathrm{MSP}(x,y)4^{\min(|x|,y)} - 4^{\min(|x|,y)} & \text{if } bit(x,y) = 1\\ 0 & \text{otherwise} \end{cases}$$

and note that f is in AC^0 because $4^{\min(|x|,y)} = 2^{\min(|x*x|,2y)} \in AC^0$. Then, $f^{\dagger_c} \in AC^0$ by Lemma 8 of [6]. Furthermore, consider the functions

$$M(r,n) = convl(arl(r),r,2^{RN}-1,r) \sum_{i < N} 2^{Ri}$$

 and

$$g(x,r,n) = f^{\dagger_c}(repl(x,2^{RN}-1,r),M(r,n),r,2^{RN}-1)$$

belonging to AC^0 such that

$$M(r,n) = \left\langle \overbrace{R-1,\ldots,R-1}^{N-times},\ldots,\overbrace{0,\ldots,0}^{N-times}; R \right\rangle$$

 and

$$g(\langle \mathbf{x}; R \rangle, r, n) = \langle \langle u_{R-1,N}, \dots, u_{R-1,1}; R \rangle, \dots, \langle u_{0,N}, \dots, u_{0,1}; R \rangle; RN \rangle$$

where $u_{i,j} = \begin{cases} 2\mathrm{MSP}(x_j, i)4^i - 4^i & \text{if } bit(x_j, i) = 1\\ 0 & \text{otherwise} \end{cases}$
So, for $\langle s_{2R-1}, \dots, s_1; RN \rangle = g(\langle \mathbf{x}; R \rangle, r, n) \cdot \sum_{i < R} 2^{RNi}$ we have

 $s_R = \left\langle x_N^2, \dots, x_1^2; R \right\rangle$

because

$$s_R = \sum_{i < R} \langle u_{i,N}, \dots, u_{i,1}; R \rangle = \left\langle \sum_{i < R} u_{i,N}, \dots, \sum_{i < R} u_{i,1}; R \right\rangle$$

by Lemma 10 and, for any $1 \le j \le N$,

$$\sum_{i < R} u_{i,j} = \sum_{i < R, bit(x_j, i) = 1} 2MSP(x_j, i)4^i - 4^i = x_j^2$$

by Lemma 23. Therefore, for

$$q(x, r, n) = lsp(msp(g(x, r, n) \cdot \sum_{i < R} 2^{RNi}, 2^{(R-1)RN} - 1), 2^{RN} - 1)$$

we have $q(\langle \mathbf{x}; R \rangle, r, n) = \langle x_N^2, \dots, x_1^2; R \rangle$. The lemma follows by noting that

$$\begin{aligned} quad^{\dagger_c}(x,l,n) &= convl(trim(q(convl(x,l,2^{2L}-1,n),2^{2L}-1,n),2^{2L}-1,l,n) \\ &, 2^{2L}-1,l,n) \end{aligned}$$

where trim is the AC^0 function defined in Lemma 15.

Now we obtain two new bases for TC^0 .

Theorem 25. $TC^0 = \operatorname{clos}_{SUBST}(C_1, add, sub, and, msp, \sum_{i < |n|} 2^{|l|i}, quad).$

Proof. Set $F = \{quad\}$ and $rpt(x, l, n) = x \cdot \sum_{i < |n|} 2^{|l|i}$. Then, by Theorem 18 and Lemma 24,

$$AC^{0}(quad) = \operatorname{clos}_{SUBST}(C_{1}, add, sub, and, msp, x \cdot \sum_{i < |n|} 2^{|l|i}, quad^{\dagger_{c}})$$
$$\subseteq \operatorname{clos}_{SUBST}(C_{1}, add, sub, and, msp, \sum_{i < |n|} 2^{|l|i}, quad)$$
$$\subseteq TC^{0}$$

and the theorem follows immediately because $AC^0(quad) = AC^0(mult) = TC^0$.

Theorem 26. $TC^0 = \operatorname{clos}_{SUBST}(C_1, add, sub, and, msp, x \cdot \sum_{i < |n|} 2^{|l|i}).$ *Proof.* By Theorem 25 it suffices to show that

$$quad \in clos_{SUBST}(C_1, add, sub, and, msp, x \cdot \sum_{i < |n|} 2^{|l|i})$$

First, consider the function $f_1(x, y) = convl(y, 2, 2^{|x|+|y|+1}, y)$ such that

$$f_1(x,y) = \langle y_{|y|-1}, \dots, y_0; |x| + |y| + 1 \rangle$$

where $y_i = bit(y, i)$ and the function $f_2(x, y) = repl(x, 2^{|x|+|y|+1}, y)$ such that

$$f_2(x,y) = \left\langle \overbrace{x,\ldots,x}^{|y|-times}; |x|+|y|+1 \right\rangle.$$

Then, for $f_3(x,y) = (2^{|x|} - 1) \cdot f_1(x,y) \wedge f_2(x,y)$ we have by Lemma 20 of [6]

$$f_{3}(x,y) = \left\langle xy_{|y|-1}, \dots, xy_{0}; |x| + |y| + 1 \right\rangle$$
$$= \left\langle xy_{|y|-1}2^{|y|-1}, \dots, xy_{0}; |x| + |y| \right\rangle.$$

Note that f_1, f_2 and f_3 belong to AC^0 and therefore $clos_{SUBST}(C_1, add, sub, and, msp, x \cdot \sum_{i < |n|} 2^{|l|i})$ by Corollary 17. to

Finally, for $f_4(x,y) = f_3(x,y) \cdot \sum_{i < |y|} 2^{|x||y|} - 1|i|$ we have

$$f_4(x,y) = \left\langle xy_{|y|-1}2^{|y|-1}, \dots, xy_0; |x|+|y| \right\rangle \cdot \sum_{i < |y|} 2^{(|x|+|y|)i}$$

and the theorem follows by Lemma 10 because the |y|-th digit in base $2^{|x|+|y|}$ of $f_4(x, y)$ is $\sum_{i < |y|} xy_i 2^i = xy_i$.

Remark. The difference between AC^0 and TC^0 seems to be very subtle. Indeed, the basis for AC^0 and the basis for TC^0 of Theorem 26 differ for one function only. Moreover, the former basis contains rp while the latter basis contains $x \cdot \sum_{i < |n|} 2^{|l|i}$, which is a sort of "extension" of rp. This result could be the starting point for a new, algebraic proof that $AC^0 \neq TC^0$.

6 Bases for complexity classes with complete problems

The new bases introduced in Section 4 and Section 5 can be used to obtain bases for complexity classes with complete problems. Indeed, in [6] it was shown that a function class F with complete decision problems under AC^0 reductions can be characterized as the AC^0 closure of the characteristic function of a suitable complete problem, provided that F is closed with respect to substitution and CRN. Then, the Improved Quotient-free Basis Theorem yields immediately a new basis for F. Here we state the new bases without proofs. The interested reader may refer to Section 3 of [6] for a full treatment of the subject.

Theorem 27.

 $NC^1 = AC^0(ch_{BFVP}) = clos_{SUBST}(C_1, add, sub, and, msp, rp, ch_{BFVP}^{\dagger_c}),$ $L = AC^{0}(ch_{1GAP}) = clos_{SUBST}(C_{1}, add, sub, and, msp, rp, ch_{1GAP}^{\dagger_{c}}),$ $P = AC^{0}(ch_{CVP}) = clos_{SUBST}(C_{1}, add, sub, and, msp, rp, ch_{1GAP}^{\dagger_{c}}),$

$$L = AC \ (cn_{1GAP}) = clos_{SUBST}(C_1, aaa, suo, ana, msp, rp, cn_{1GAP})$$

$$P = AC^{0}(ch_{CVP}) = clos_{SUBST}(C_{1}, add, sub, and, msp, rp, ch_{CVP}^{+c})$$

 $PSPACE = AC^{0}(ch_{QBF}) = clos_{SUBST}(C_{1}, add, sub, and, msp, rp, ch_{QBF}^{\dagger c})$

where BFVP is the Boolean Formula Value Problem, 1GAP is the Degree-One Graph Accessibility Problem, CVP is the Circuit Value Problem and QBF is the Quantified Boolean Formulas Problem.

Note that Theorem 27 also holds when rp is replaced by $\sum_{i < |n|} 2^{|l|i}$ and quador by $x \cdot \sum_{i < |n|} 2^{|l|i|}$ (and BFVP, 1GAP, CVP and QBF are possibly replaced by TC^0 -complete problems for NC^1 , L, P and PSPACE respectively).

References

- P. Clote. Sequential, machine-independent characterizations of the parallel complexity classes AlogTIME, AC^k, NC^k and NC, pages 49–69. Birkhäuser Boston, Boston, MA, 1990.
- [2] P. Clote. Computation models and function algebras. In Edward R. Griffor, editor, Handbook of Computability Theory, volume 140 of Studies in Logic and the Foundations of Mathematics, pages 589 – 681. Elsevier, 1999.
- P. Clote and G. Takeuti. First Order Bounded Arithmetic and Small Boolean Circuit Complexity Classes, pages 154–218. Birkhäuser Boston, Boston, MA, 1995.
- [4] W. Hesse, E. Allender, and D. A. Mix Barrington. Uniform constant-depth threshold circuits for division and iterated multiplication. *Journal of Computer and System Sciences*, 65(4):695 – 716, 2002. Special Issue on Complexity 2001.
- [5] S. Mazzanti. CRN elimination and substitution bases for complexity classes. Fundam. Inform., 120(1):29–58, 2012.
- [6] S. Mazzanti. Bases for AC⁰ and other complexity classes. Fundam. Inform., 136(4):433-460, 2015.
- [7] S. A. Volkov. Generating some classes of recursive functions by superpositions of simple arithmetic functions. *Doklady Mathematics*, 76(1):566-567, 2007.
- [8] S. A. Volkov. Finite bases with respect to the superposition in classes of elementary recursive functions, dissertation. CoRR, abs/1611.04843, 2016.