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Abstract: The hospital soundscape is known for high noise
levels and a perception of chaos, leading to concerns about
its impact on patients, families, professionals, and other hos-
pital staff. This study investigates the relationship between
sound, Annoyance, and sleep quality in a multi-patient neu-
rology ward. A mixed-methods approach was employed.
Interviews were conducted with medical staff (n = 7) to
understand their experiences with sound. Questionnaires
and sleep tracking devices (n = 20) assessed patient sleep
quality and Annoyance caused by sound events. In addition,
listeners (n = 28) annotated 429 nighttime audio recordings to
identify sound sources and rate Annoyance level, which we
considered the key emotional descriptor for patients. Over
9,200 sound events were analysed. While snoring, a patient-
generated sound dominated the nighttime soundscape and
was highly rated for Annoyance, and staff-generated sounds
such as speech and footsteps were found to contribute more
to accumulated Annoyance due to their extended duration.
This study suggests that patient sleep quality can be improved
by focusing on design interventions that reduce the impact
of specific sounds. These might include raising awareness
among staff about activities that might produce annoying
sounds and implementing strategies tomitigate their disrup-
tive effects.

Keywords: indoor soundscape, hospital ward, sleep distur-
bance, Annoyance, sound-driven design

1 Introduction

There is increased awareness not only in the scientific
world but also among the general public and political deci-
sion-makers on the negative impact of a poor soundscape
quality on human life [1] and on other species [2,3]. The
World Health Organization estimates that one in five resi-
dents of a European city is exposed to a harmful level of
environmental noise responsible for an increased risk of
cardiovascular diseases and hearing problems [4]. Numerous
studies investigated how the restrictions imposed by the COVID
pandemic radically changed the perceived quality of the urban
soundscape [5–7] in the prolonged absence of human-gener-
ated sounds. Prominent sound sources in the urban sounds-
cape, usually masked by continuous background sounds (such
as traffic), were brought to our attention, highlighting the
relation between sound events, Annoyance, and, ultimately,
adverse health consequences [8]. Recent studies [9,10] show
that sound pollution has adverse effects ranging from car-
diovascular diseases, sleep disorders, chronic stress, and
post-traumatic stress disorder to hearing loss on many
populations, from infants to older adults in a variety of
contexts both outdoors and indoors.

The hospital environment is particularly sensitive as a
poor quality of the acoustic environment has the potential
to both worsen patients’ health and lower the performance
of professionals [11,12]. Bliefnick et al. [13] showed how
patients generally perceive the hospital’s soundscape as
poor mainly due to the continuous presence of sounds
produced not only by alarms and other medical equipment
[14–16] but also by human activity within units. Specifi-
cally, speech (i.e., staff conversations) is identified as the
most disturbing sound source in hospital care in several
studies [17–19] along with other mechanical and human-
generated sounds such as phone calls and delivery trolleys
[20]. Scientific literature ([21] for a comprehensive review)
shows how from 1960 to the present day sound levels in
hospitals have risen consistently by ∼0.38 dB/year in day-
time [22] in spite of efforts to reduce it. Previous studies
indicate how increasing nurses’ awareness and providing
training on how to limit unwanted sounds (i.e., noxious
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sounds that negatively affect health and well-being or lead
to other harmful consequences) has a clear positive impact
[23,24]. However, research from the authors of this article
[25,26] shows that caretakers are often unaware of the role
of different sound sources and feel they have no control to
improve the overall acoustic quality of the ward.

Several solutions have been developed in the hospital
context to provide information on the quality of the sounds-
cape. Generally, such technological solutions collect and
measure the sound pressure level (SPL), expressed in deci-
bels and typically A-weighted), and numerically represent
its peak values on a display [27]. Nonetheless, SPL measure-
ments are difficult for lay users to interpret [8] and do not
describe the affective quality of sounds as perceived by
humans [28]. Moreover, SPL measurements do not allow
for the identification of the sound source, which is crucial
to increase awareness and work towards the active improve-
ment of the hospital soundscape.

This article presents the results of a study that explored
the following research questions: What sounds are found in
hospital wards, what are their sources (e.g., speech, mechan-
ical sounds, snoring), and by what actions and interactions
are they generated? Under which conditions and how do
specific sound types within the context of hospital wards
cause Annoyance and sleep disturbances? In order to
explore these questions, we used a set of mixed methods
including interviews with medical staff, patients’ question-
naires, sleep-tracking devices, and soundscape data collec-
tion and analysis. We apply these methods through the
lenses of a soundscape studies approach as a perspective
that offers us a distinction between noise as unwanted
sound, and sound as a resource [29]. Our aim is ultimately
tomitigate unwanted sound (i.e., commonly known as noise)
in a way that the remaining sounds have a distinct ecolo-
gical role in an acoustic environment. In order to create
such sonic hygiene free of noise in a hospital context, we
will need to rely on identifying sound sources and disco-
vering their impact on patient sleep. Thus, our focus is on
improving conditions for indoor soundscapes and devel-
oping new noise mapping strategies [30]. In this sense,
our case study does not only focus on noise mitigation
but also on holistically evaluating the impact of sound
towards the possibility of predicting the quality of the
soundscape and increasing awareness towards its active
improvement.

The results of the study aim to contribute to the defini-
tion of novel solutions that integrate computational models
and design-driven interventions for the monitoring and
mitigation of sound-induced sleep disturbances, and the
improvement of the ward’s soundscape. Towards these
ends, the new solutions should be able to provide healthcare

professionals with relevant information on the “footprint”
of the ward’s sounds, i.e., the impact of different sound
sources [27,30], so that they can take action to improve the
hospital soundscape and consequently the wellbeing of
patients.

1.1 Context: hospital sound and sleep

Since humans subconsciously perceive and react to sound
even while asleep [31], sound events are a significant envir-
onmental factor that can interfere with our regular sleep
patterns. Sound can act as an external stressor, inducing
neurophysiological changes in brain regions linked to cog-
nition and emotion, particularly the prefrontal cortex, amyg-
dala, and hippocampus [32]. Sudden foreground sounds
trigger the listener’s directed attention reorientation reflex;
chaotic soundscapes further disrupt recovery by preventing
arousal from returning to baseline between sound events
[33]. Sleep interruptions by sound elevate physiological and
cardiovascular activity, leading to sleep disturbances and
increased risk of stress, fatigue, and even mental health pro-
blems [34]. The detrimental impact of sound on sleep is par-
ticularly relevant for hospitalised patients, whose well-being
is already compromised [35–37]. Among other sound sources,
snoring has been recently identified as a major contributor to
sleep disruption [38]. Muzet’s [39] review underscores the
influence of the sound type (e.g., continuous, impulsive, inter-
mittent) and the frequency spectrum on sleep quality in
exposed patients. There are correlations between disruption
and Annoyance; that is being disrupted by (unwanted) sound
causes sound Annoyance (Marquis-Favre et al.) [40]. We
define an annoying sound event as a sound that has the
potential to intrude and impede the listener’s activity, in
our case, sleeping.

As shared acoustic biotopes [12] in which multiple
actors and multiple interactions take place, hospitals pre-
sent an ambiguity of functions, which can change over the
time of the day. For example, a patient room should be
conducive to caregiving activities as well as resting and
sleeping. Consequently, the hospital soundscape is charac-
terised by potentially colliding sound events of which
nurses should be aware to prevent their negative conse-
quences. However, mitigating the sleep disruption problem
by sound is still an ongoing effort in the field of sound-
driven design for healthcare [41,42]. With this study, we
aim to contribute to this ongoing research by specifically
investigating the Annoyance caused by sound events and
its association with disturbed sleep. As a following step,
we will use data collected in the study to define a
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computational model of sound-induced sleep disturbances
in hospital wards.

2 Methods

This research started in the Neurology Department of
Reinier de Graaf hospital in Delft, the Netherlands [25].
The hospital has been interested in addressing noise-
induced sleep disturbances through design solutions. All
the experimental activities described in this study took place
in this specific context, with the final goal of designing an
intervention that would allow for an environment condu-
cive to sleep. Reinier de Graaf hospital’s neurological ward
consists of 4 four-patient rooms and nine single-patient
rooms connected by a long corridor. The hospital, opened
in 2015, is about 2 km from the centre of Delft in a residential
area with a two-lane busy road on one side of the hospital.
Windows, which cannot be opened, are three layered and
have Integrated blinds. The exterior wall of the hospital meets
the highest requirements for sound insulation (Gak = 38 dB(A),
where Gak is the Dutch equivalent for D2m,nT,w, i.e., the
weighted standardised façade level difference for buildings
acoustic insulation (see ISO 717-1:2020 [43]) as established in
the ISO 12354-3:2017 [44] and the Dutch Noise control in build-
ings standard (NEN-EN 12354-3 [45]).

In an earlier study [25], the hospital and the authors
conducted semi-structured expert interviews with nurses
to see whether sound was an issue for patient sleep in the
ward. The thematic analysis of the interviews [46] suggested
that the nurses collectively believe that while most sound
events in a single-patient room are unlikely to disrupt sleep,
patients may not get enough sleep due to the periodic check-
ups which require waking. Conversely, patients residing in
the four-patient rooms may not be getting enough sleep
mostly due to other patients’ influence. Upon compiling all
of the sound sources that the nurses had described, various
sound categories were identified that characterise the acoustic
environment of the ward under study, including sounds pro-
duced by hospital employees, patients, visitors, the environ-
ment, and medical equipment [25]. The keywords and sound
source categories we identified determined the design of the
quantitative study presented in this article which aimed to
identify the sound sources potentially disrupting patients’
sleep. The study employed several different methods and
notably questionnaires to patients, collection of patient sleep
data through Fitbit devices, and collection of soundscape data
(sound recordings). The study was approved by the Medical
Ethics Review Committee (in Dutch, METC) for the Leiden –

Den Haag – Delft area (ref. no. N20.148).

2.1 Patient sleep study

Twenty patients participated in the experiment. Each pro-
vided their informed consent, and the patients who also
slept in the same rooms, without being monitored (see further
below), also provided their informed consent. Patients were
sleeping in different yet structurally identical four-bed rooms
of the neurological ward, between March 15 and April 4, 2021.
Data were collected from each patient on two different nights.
Depending on patient occupancy and availability, the “start”
and “end” of nighttime were slightly variable. We included
data collected between 9:30 pm and 7:30 am, i.e., a duration
of 10 h.

2.1.1 Patient questionnaire

The patients filled out a questionnaire in the morning after
each night they participated in the experiment. Complete
data were obtained from 32 observations. The question-
naire was conducted in the Dutch language, and for con-
venience, terms are translated into English. It included five
self-ratings of sleep quality, eight ratings of disturbing
sounds, and one overall assessment. The patients’ question-
naires used Likert scales with four levels: self-ratings: com-
pletely disagree – disagree – agree – completely agree;
Environment ratings: never – sometimes – often – always;
General rating: very annoying – somewhat annoying –

somewhat pleasant – very pleasant. In the present explora-
tory analysis, we interpret the Likert scales as interval
scales, with values 1, 2, 3, and 4.

2.1.2 Arousal detection

For an objective measurement of sleep quality, we employed
Fitbit Inspire HR health tracking bracelets. In the sleep experi-
ment, they were worn by three of the patients in each room.
To prevent the “first-night effect” [47], bracelets were worn
solely by patients who had been hospitalised for at least one
night before the data collection. The device gathers time-
stamped data at a 30 s resolution regarding the user’s four
sleep stages – i.e., awake, rapid eye movement sleep, light
sleep, and deep sleep. Fitbit technology has demonstrated a
high degree of reliability in identifying transitions from
deeper sleep stages to awake when compared to polysom-
nography, the gold-standard (although intrusive) scientific
method for tracking sleep. On the other hand, it is largely
ineffective at differentiating between deep and light sleep
stages [48]. Consequently, starting from the raw Fitbit data,
we filtered only and exclusively the events corresponding to
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a transition from a deep or light sleep stage to an awake
state and labelled them as arousals. Data were captured
from 19 patients in 30 observations, totalling 474 arousal
events.

2.1.3 Statistical methods

In the post hoc analysis of data, we employed only stan-
dard statistical methods: first, multivariate analysis of
variance (MANOVA) and univariate analyses of variance
(ANOVAs), with assumptions tested in cases of significance;
second, exploratory factor analysis (EFA) to identify latent
factors in the patients’ questionnaire responses (Section
3.1.1); third, comparison between dependent (latent fac-
tors) and independent (measured) variables in a cross-
correlation analysis, using a non-parametric statistic
(Section 3.3).

2.2 Hospital soundscape analysis

2.2.1 Sound recordings

In parallel with capturing the sleep quality state of patients
using Fitbit devices, we recorded the room’s acoustic envir-
onment using an Audio-Technica AT2020 cardioid micro-
phone (mono, 16 bits, 48 kHz). For the microphone stand
not to encumber normal movement and activities in the
room, it was placed adjacent to the wall facing the entrance
door (Figure 1). The microphone, powered by a Blue Icicle
preamplifier, was controlled by a MATLAB script running
on a common laptop. The software recorded continuously
over the course of the whole night, i.e., approximately for
10 h, using the same audio recording equipment and level
settings.

All the captured data, sleep tracking and audio record-
ings, were time stamped and synchronised. When trig-
gered by a Fitbit-detected arousal, the software extracted
a 30 s audio file capturing the room soundscape immedi-
ately preceding the disturbance. In 45 out of the 474
detected arousals, there was a short silent gap in the
recording due to technical issues, and they were therefore
excluded. The remaining 429 excerpts had a total duration
of 3 h, 42 min, and 30 s. In the next step (see Section 3), this
set of soundscape recordings was tagged and analysed,
with the purpose of identifying which sounds and events
may have acted as external causes for the detected sleep
disturbances.

2.2.2 Annotation procedure

The procedure of sound source annotations had been
developed by two of the authors of this article for the
evaluation of recordings of urban soundscapes during
the COVID lockdown [5], and it was adapted for the present
study. Thirty participants, here referred to as “annotators”
were recruited to evaluate the 429 soundscape recordings,
all confirmed being in normal health and having no hearing
loss at the time of the task. In a first round, 18 participants
were recruited by snowball sampling among undergraduate
and research students currently in or having completed a
sound-focused class. Their mean age was 26 years, with a
range between 18 and 40, and consisted of 11 females and 7
males. Their work lasted approximately 90min. Two of
them were excluded due to low consistency in performing
the task. The average number of soundscape recordings by
each annotator was 5.5. To assure high quality in ratings, we
then recruited a second round of 12 annotators considered
as expert raters (research students and assistants in the
authors’ labs, together with the authors themselves). Their
mean age was 30 years, ranging between 24 and 55, and
comprised 10 females and 2 males. The average number of
soundscape recordings by each expert was 27.5, taking
3–4 h.

Each file was opened using the Audacity® software
with settings as follows: spectrogram (80–8,000 Hz Mel

Figure 1: Layout of a four-patient room with microphone placement, as
seen from above.
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scale), grayscale, and full-width and full-height display. The
annotators wore headphones (Audio Technica ATH-M70X
or a similar closed-back monitor headphone). Annotators
were instructed to mark as many sound sources as they
could (aiming at around 6–15 in each 30 s recording),
focusing on “sounds that you think could disturb some-
body’s sleep.” In the Audacity® interface, they would select
the start and end points of the sound event in the corre-
sponding spectrogram using the “Label” function (Figure 2).
A set of nine labels, notably “beep,” “breath,” “clothes,”
“cough,” “footstep,” “furniture,” “mechanical,” “snore,” and
“speech,” extracted from the thematic analysis of the med-
ical staff’s interviews (Section 2.1) were provided to annota-
tors to be used in the labelling task. A “other” category was
added. The annotators were then asked to label each selected
sound event using the nine categories provided (or the
“other”) and to rate the Annoyance that each annotated sound
source might cause.

A three-step Likert scale was employed, with numerals
1, 2, and 3 referring to low, medium, and high perceived
Annoyance, respectively. In the instructions given to the
annotators, it was stressed that Annoyance should be rated
within the given category of sound and independently of
loudness and duration. Hence, for example, “breath 3”
would indicate a highly annoying sound event, and more
annoying than “snore 2” even if the latter might very well

be louder than the former; meanwhile, duration was cap-
tured by the label’s end and start points. The three-step
scale was adapted from the protocol developed by one of
the authors in the study by Lindborg [49] to assess an
estimate of the liking (where “dislike,” “neutral,” “like”
were coded as numerical −1, 0, and 1, respectively) of sound
sources in indoor (restaurant) soundscapes. Thus, in the
present study, annotators were instructed to add a number
from 1 to 3 to the word label for each sound event in the
Audacity® software and export all labels in text form.

3 Results

We present the comprehensive findings and analyses derived
from our experiments, with the aim of shedding light on the
research questions of this study.

3.1 Analysis of the patient sleep study

3.1.1 Analysis of patient questionnaires

Themeans for self-ratings across patients, in order fromagreeing
more to less, were “Quiet falling asleep” (mean = 2.88), “Sleep

Figure 2: Screenshot of Audacity® interface showing a spectrogram of a sound file with several labelled annotations, and a window with the exported
text file. Note that one label was misspelt in this example.
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satisfaction” (2.62), “restless sleep” (2.59), “awoken by sounds”
(2.47), and “difficulty falling asleep” (2.22). The differences in
means were very small between these scales. Among the
environment ratings, we retained six for further analysis.
In order of higher to lower frequency of causing disturbance
(to the patients), they were: “Snoring [by other patients]”
(mean = 2.03), “Actions of medical staff” (1.78), “Voices of
medical staff” (1.62), “Personal medical devices” (1.47),
“Voices of other patients or visitors” (1.47), and “Trolleys”
(1.44). Here as well the differences are rather small, but there
are intriguing patterns that will be investigated further below.
The mean general assessment of “Soundscape quality” was
2.84. Please note that these means are reported here for the
convenience of making an initial comparison. See Figure 3 for
distributions on questionnaire responses. See also Datafile 1 for
aggregated patient data.

To explore whether the questionnaire responses
depended on the experimental conditions, we conducted a
MANOVA taking the questionnaire scales as dependent vari-
ables, and night, room, and patient as the independent fac-
torial variables (with 2, 7, and 20 levels, respectively). Results
revealed that responses did not significantly differ between
nights (Pillai = 0.93, F = 2.3, p = 0.33) or patients (Pillai = 6.2,
F = 1.3, p = 0.073), but did so between rooms (Pillai = 4.4, F =

1.6, p = 0.044*). To find out in what way, we conducted a
series of univariate ANOVA, taking in turn each of the ques-
tionnaire responses as the dependent variable and only
room as the independent variable. For three scales, responses
varied significantly between rooms: “Soundscape quality,”
“Quiet falling asleep,” and “Voices of medical staff.” For each
of the three, the standard ANOVA assumptions were met:
observations were independent (i.e., separate patients in sepa-
rate rooms); residuals were normally distributed according to
Shapiro-Wilk’s test; and there was homogeneity of variance
according to Levene’s test. Furthermore, plots revealed no sys-
tematic bias between scale responses, depending on room.
These results reflect the subjective experience of the patients
during a night of sleep.

The 12 rating scales in the questionnaire were devel-
oped with the assumption that they would cover essential
aspects of the patients’ sleeping experience. They can be
understood as latent factors in the data, and EFA provides
an estimate of the correlations between rating scales and
the latent factor(s). In the present study, we used the nfac-
tors() function in the psych package [50] running in R [51],
specifically the output of VSS analysis [52] to identify three
optimal factors. This supports the questionnaire’s division
into three sections. The fa() function from the same library,

Figure 3: Responses on the patient questionnaire. Histograms in top row: self-ratings; middle and bottom rows: room ratings; bottom right: overall
assessment of the sonic environment. X-axes are Likert scale labels; Y-axes represent the density of response alternatives.
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with settings for ordinary least squares regression and
promax rotation, then yielded a minimum residual solu-
tion explaining 59% of the variance in the data with factors
that lent themselves to a straightforward interpretation
(Table 1).

The first factor, explaining 26% of the data, loaded
onto “Voices of medical staff,” “Actions of medical staff,”
and negatively onto “Soundscape quality.” It also captured
two aspects of self-ratings, “Awoken by sounds” and nega-
tively by “Quiet falling asleep.” It appears that the underlying
factors capture sound events happening in the room, and the
patients’ evaluation of the resulting quality. We labelled
the latent factor “Room.” The second factor, explaining 19%
of the data, loaded onto “Trolleys,” “Personal medical
devices,” and “Voices of others,” and we labelled it
“Objects.” The intriguing case of voices by non-staff is further
discussed in the section on sound source classification.
Finally, the third latent factor, explaining 14% of the data,
loaded onto “Difficulty falling asleep” and “Restless sleep,”
thus quite clearly capturing a negative evaluation of the sleep
as experienced by the patient himself or herself.

In summary, the factor analysis suggests that the
nighttime soundscape, as evaluated by patients, was
negatively affected by voices and actions produced by
medical staff. They also noted sounds from specific
objects and voices from others. Several questionnaire
responses reflect that patients were disturbed during
the night (in particular, “Restless sleep” and “Awoken
by sounds”). To support these subjectively based find-
ings, we also measured sleep quality in an objective
way, described in the next section.

3.1.2 Analysis of arousal data

Similar to the analysis of questionnaire data described in
the previous section, we conducted an ANOVA by taking
the number of arousals per observation as the dependent
variable and the experimental conditions as independent
factors. Results revealed that arousals did not significantly
differ among nights, rooms, and patients (p > 0.3 in all
cases). This should be interpreted to say that sleep quality
did not depend on experimental conditions.

However, the patients did report different experiences,
in regards to “Soundscape quality,” “Quiet falling asleep,”
and “Voices of medical staff,” which is not reflected in the
Fitbit data. It might be that the multifaceted questionnaire
was able to capture subjective and more subtle nuances in
the sleep experience. Or, it might be that the patients’ aware-
ness of reduced sleep quality did not come from memories
(the following morning) of how many times they had been
disturbed during the night, and most certainly not by what
exact sound. Rather, the questionnaire responses would be
more easily explained as based on observations patients
had consciously made before falling asleep, such as being
annoyed by the lack of quiet or staff voices or experiencing
such incidents upon awakening in the morning. This is not a
fault of the observational acuity of questionnaire respon-
dents, but simply reflecting that it is unusual, to say the least,
to be rational about sounds we perceive while sleeping [31]
and extremely hard to remember anything external at all
that might have happened during sleep. So how could we
find out which noises might have contributed to nighttime
arousals, stirring patients and half-waking them up?

Table 1: Factor analysis of responses on the patient questionnaire. For clarity, only loadings >0.5 are shown

Room Objects Self

Self-ratings Difficulty to fall asleep 0.82
I slept restlessly 0.71
I was satisfied with my sleep quality
Quiet enough to fall asleep −0.51
I woke up to sounds around me 0.66

Environment ratings Snoring of other patients
Trolleys 1.07
Personal medical devices 0.77
Actions of medical staff 0.72
Voices of medical staff 0.95
Voices of other patients or visitors 0.66

General Overall assessment of sonic environment −0.78
Proportion variance 0.26 0.19 0.14
Cumulative variance 0.26 0.45 0.59

Perceived quality of a nighttime hospital soundscape  7



To investigate the potential causes of sleep disturbances,
recordings of the sonic environment were analysed.

3.2 Analysis of the hospital soundscape
study

3.2.1 Sound source classification

The semi-structured interviews with medical staff pointed
towards a rather large number of potential sources for
disturbing noises. This information was used in the devel-
opment of the patient questionnaire. In addition, we con-
ducted an initial analysis of sound recordings, which yielded
six categories (plus “other”) of sound sources and events
[25]. These analyses constituted the starting point for a
detailed classification of the sound sources, and their Annoy-
ance level, at the nighttime hospital wards. Going from the
patient questionnaire, via the initial analysis, to the second
(soundscape) analysis, the following section explains how
we interpreted sources and events in the sleeping environ-
ment. See Figure 4 for a schematic overview of the process
of classification. Note that in the context of the present
study, “sound source” and “sound event” are considered to
be the same thing.

The overall most prevalent kind of sound was “snoring.”
This category in the patient questionnaire was split into
“snoring” and “coughing” in the initial analysis and then in
the soundscape analysis further detailed to include “breath”
as a separate category. The questionnaire’s categories for
“staff voices” and “other voices” were merged in “speech,”
and through detailed listening. it was determined that all

voices were in fact made by personnel and categorised
accordingly. The “staff actions” that the patients rated might
refer to different actions and sound sources. It appeared that
the most common source directly attributable to personnel
actions was “footsteps.”Meanwhile, the patient questionnaire
rated “trolleys,” which in the initial would be “incidental
sounds” and as such fairly common in the soundscape ana-
lysis, where they were divided into two distinct categories,
“mechanical” (typically, trolley sounds, also metal plates, etc.)
and “furniture” (doors closing, beds creaking, etc.). The two
categories “TV, telephone” and “Liquids (toilet flushing)” in
the patient questionnaire were in the initial analysis merged
under the “other sounds” label but were not present to the
ear in the soundscape analysis. Finally, “medical devices” or
“alarms” (heard as “beeps”) retained a distinct category
throughout the process.

This yielded nine categories for the soundscape ana-
lysis. They were labelled as follows: beep, breath, clothes,
cough, footstep, furniture, mechanical, snore, and speech.
In addition, a rest category was included as: “other (spe-
cify),” though eventually, no annotated sound needed to
use it. The nine basic categories were allocated to two
higher-level and non-overlapping categories (i.e., forming
a taxonomic clade) following a procedure previously used
by the authors [49,5].

Sounds labelled as “breath,” “cough,” and “snore”were
all produced by patients. Note that they are mouth-made
sounds rather than voices. So, what about “patient voices”?
Based on annotations and subsequent careful re-listening
by the authors, there was no sound event that could clearly
be understood as “patient voices,” for example, either a
patient talking in their sleep, or patients chatting between
themselves. There would have been events where a staff

Figure 4: Schematic representation of the classification of sound sources used in the case study, integrating terms and labels from three successive
steps: (1) patient questionnaire, (2) initial analysis of soundscape recordings, and (3) detailed annotations and analysis of recordings.
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member speaking with a patient (perhaps the staff responding
to a call from the latter or administering medicine); however,
in the present analysis, it appeared reasonable to group such
sound events under “staff actions.” Sound labelled as “footstep”
and “speech” were put under “actions” by medical staff,
while “mechanical,” “beep,” and “furniture” were consid-
ered “objects” that are also under the control of medical
staff. Finally, sounds labelled as “clothes” could have been
generated by movements either by personnel or patients.
Since it was impossible to know which, “clothes” was not
included either.

3.2.2 Results from annotations

In total, annotators identified 9,296 sound events in the
recordings. See Datafile 2 for the complete annotations
data. Raw annotations were tidied up (changing to lower-
case, removing trailing blank spaces and non-letter sym-
bols, correcting spelling mistakes, grouping by synonyms,
e.g., snore-snoring or breath-breathing, and so forth) and
allocated to the nine predetermined categories. In a small
number of cases, the annotator had used the “other” category.
These were individually listened to by the researchers and
either interpreted in one of the predetermined nine cate-
gories or removed. After this, the repartition among cate-
gories was as follows: “snore” (47.0%), “breath” (25.0%),
“furniture” (6.4%), “mechanical” (5.9%), “speech” (5.7%),
“clothes” (4.4%), “footsteps” (2.3%), “beep” (2.1%), and
“cough” (1.2%). See Table 2 for an overview of all the
statistics that were derived.

From counts and percentages in the sound categories,
two estimates of inter-rater agreement among the annota-
tors (N = 28) could be calculated. For each annotator, we
extracted the number of labels in each of the nine sound
source categories relative to the total, and their Cumulative
duration relative to the total, as captured by the labels. We
then tested agreement in two ways: first, by using func-
tions in the DescTools package [53], Krippendorff’s alpha
was found to be 0.79 for label counts and 0.71 for label
durations, and second, by calculating Spearman’s rho on
the vectors pairwise. For the number of labels, the median
correlation was 0.85 in a range [0.54, 0.90], and for dura-
tions, it was 0.80 in a range [0.37, 0.85]. While the evalua-
tion of the Krippendorff statistic is context sensitive [54],
we found that the overall level of agreement among anno-
tators was good and decided to keep data from all 28
annotators.

Recall that the annotators gave each labelled sound a
value (1, 2, or 3) to indicate its level of Annoyance (low,
medium, or high) within that category of sound. We Ta
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treated the three levels as numerical values on an interval
scale. Error bars are plotted in Figure 5.

Looking at means within categories (see Datafile 2), the
highest Annoyance estimates were for “cough” (mean =

2.80) and “snore” (2.09). However, these kinds of sounds
were of different character: coughing appeared less fre-
quently (1.2% of annotations) and were of shorter duration
(1.42 s on average) than the very prevalent snoring (47%)
that were typically longer (2.22 s). Slightly less annoying
were “beep” (alarms and other signals) and “speech” (almost
exclusively communication amongst the nursing personnel).
Similar to the previous pair, their occurrence was different:
beeps were less frequent and shorter than speech. The
Annoyance levels of sounds under “furniture,” “footsteps,”
and “mechanical” were comparable, but the durations dif-
fered greatly. In fact, the “furniture” category included inter-
mittent sounds such as the closing of doors, while “mechan-
ical” included several occurrences of continuous background
noise from air conditioners. Finally, the least annoying (yet
still a potential cause for sleep disturbance) were sounds
from breathing and the rustling of clothes, which were
similar in terms of duration and frequency. These observa-
tions caused us to carefully consider the duration of poten-
tially disturbing sound events. As mentioned earlier,
Annoyance was rated for each sound event on a scale 1–3.
Noting that the annotators used this scale slightly differently,
we z-scaled the values within each annotator, putting the
centre at 2 (corresponding to ‘medium’ Annoyance) and giving
the distribution a standard deviation of 1. Since the distribu-
tion of Raw Annoyance ratings within the annotator was
always positively skewed, the variable scaled this way did

not have a range of [1, 3] but instead [0.26, 10.9]. However,
and importantly, the interquartile range was [1.1, 2.9], which
is indeed close to [1, 3]. This motivates employing the z-scaled
variable to operationally define two indices of the negative
impact that sounds of different types might have on sleep.
They are defined as follows:

Normalised Annoyance, Az is the z-scaled Annoyance,
Araw, within each Annotator centred on 2:

( ) ( )= − +A A Ā σ A/ 2.z raw raw raw

Integrated Annoyance, Aint, is Normalised Annoyance, Az,
multiplied by the logarithm of the sound’s duration, dur:

( )= ×A A ln dur .zint

Cumulative Annoyance, Acum, is the sum of Aint for all
sound annotations within a given time interval, t:

∑=A A

t

cum int

See Table 2 for an overview of the results, listing mean
values for raw, scaled, Integrated, and Cumulative (total)
Annoyance for each sound category and the three higher-
level categories (as described in Section 3.3.2) in the anno-
tations data. First, looking at the raw counts (or frequency),
we note that almost half (47%) of the annotated events
were “snoring.” Note that each individual snore was sepa-
rately labelled and that they most often appeared in a
series of three or more, sometimes but not always with
more or less intensive “breaths” (25%) in between snores.
“Furniture,” “mechanical,” and “speech” followed at around
6% of the annotations. Second, taking duration and rated
Annoyance into account might produce a more nuanced

Figure 5: Annoyance (raw) rated by annotators (N = 28) in nine sound source categories; means with 95% confidence intervals. Compare with
classification in Figure 4.
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picture of sleep disturbances. We note that “speech” had the
highest Integrated Annoyance (because voices tended to be
present for a longer time) followed by “mechanical,” which
had the longest average duration, and “snore.” The last
column in Table 2, Cumulative Annoyance, gives a measure
for how much, in the whole dataset, the Integrated Annoy-
ance for each sound category amounted to. Again, “snore” is
clearly the primary culprit, followed by “breath,” “speech,”
and “mechanical”; the remaining four categories, including
“beep,”might be safely given less attention in future research.

3.2.3 To modelling a “typical night”

Second, we gathered information on the distribution of
annoying sounds to chart out a “typical” night to identify
sleep-disturbing sound sources. Estimates for Annoyance
were obtained for pre-determined sound categories and
post-determined higher-level categories. The number of
occurrences and duration of the annotated sounds, and
their Annoyance levels, were calculated to obtain
Integrated and Cumulative Annoyance levels for each cate-
gory as well as the three higher-level categories. Integrated
Annoyance was then calculated in time windows over the
nightly recordings (9:30 pm to 7:30 am) to obtain an estima-
tion of the prevalence of sleep-disturbing sound events.
Within the three higher-level categories, personnel-gener-
ated behavioural sounds have the highest level of
Integrated Annoyance (1.44). Recall that Integrated
Annoyance depends on the (logarithm of) duration of sound
events, as well as their rated Annoyance level (Table 2). This
finding is critical in supporting design-driven interventions

towards the improvement of patients’ well-being in hospital
wards. Sounds belonging to this category are, in fact,
actively produced by nursing staff during their work routine
(notably, “speech” and “footsteps”), and their potential to
disrupt sleep increases as a function of their Cumulative
duration over time. As such, they can be actively mitigated
to reduce their negative impact. Within the object’s sounds,
mechanical sounds have a higher Annoyance level. Even if
sounds in this category occur less frequently than, for
instance, furniture sounds, they tend to have a longer dura-
tion which is responsible for a higher Integrated Annoyance
level. This might be due to the presence, within this cate-
gory, of continuous sounds such as background noise gen-
erated by air conditioning and heating systems. Alarm
(“beep”) sounds, very often indicated as a critical source
of discomfort for hospital patients and nursing staff [55]
present low Cumulative Annoyance. This is perhaps not sur-
prising in the context of the ward under study, where
alarms occur far less frequently than, for instance, intensive
care units in which alarms represent a major health con-
cern. In general, this is yet another evidence supporting the
claim that the evaluation of the soundscape quality is highly
context dependent [56].

See Figures 6 and 7 for illustrations of how Integrated
Annoyance of different sound types developed over the course
of a typical night, with “snoring” being by far the most
annoying sound event, followed by “breath,” “speech,” and
“mechanical.” The reader will recall that the sound samples
analysed in this study immediately precede each single arousal
as collected by the tracking bracelets. Therefore, the curves can
be interpreted as an index of the probability that a given sound
type caused a sleep disturbance at that point in time.

Figure 6: Estimated disturbance of sounds in the nine categories over the course of a typical night. Values are accumulated Integrated Annoyance in
time windows of 20 min with 50% overlap.
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Preliminary experimental findings highlight an accu-
mulation of snoring sounds rated with the highest Raw
Annoyance level in the interval from 12:00 am to 4:00 am.
This might be due to contextual and environmental factors,
i.e., it is the time of the night when patients are normally in
a deeper sleep state, and there is a limited presence of
other sound sources, i.e., annotators might have tended
to interpret as more annoying those sound sources that
“intruded” on the soundscape. This interpretation aligns
with one of the co-authors’ previous interpretation that
noise sensitivity (a predictor of Annoyance), as a self-
report measure, captures an evaluative predisposition
towards sounds rather than aspects of auditory processing
or noise exposure per se [57]. The highest sound Annoyance
is found between 3:00 am and 4:00 am. In this frame, a
higher Integrated Annoyance for patient-generated sounds
(breathing and snoring) corresponds to higher Annoyance
level for speech, which is a sound voluntarily generated by
nursing personnel (Table 2). This finding suggests a direct
correlation between the increased occurrence of speech
sounds and disturbance in patient sleep, and as mentioned,
its negative impact could be prevented if nurses are made
aware of the consequences of their sound-producing beha-
viour. Note that this time frame coincides with the last
“big” night shift before the last night shift (which takes
place around 6 am, see next paragraph). During this shift,
nurses are active with major caregiving activities such as
administering medicines. In shared patient rooms, this will
create awakening and further induce more sound-produ-
cing events such as coughing or conversations between
patients or patients and nurses. In addition, it is commonly
known that nurses do activities to keep themselves busy

and active to maintain an awake state. They may socialise
in the central nurse station or in the corridor, and these
activities may contribute to nocturnal noise.

Towards the end of our data collection timeframe,
Cumulative Integrated Annoyance tends to grow for all
the sound categories. Between 6:00 am and 7:00 am speech,
furniture, beep, footsteps, and cough become more fre-
quent and annoying (Figures 6 and 7). This is most likely
due to the progressive awakening of the ward’s activity with
the handover from the night shift, breakfast delivery to
patients, cleaning, the start of the medical exams, and all
activities that will involve more communication and action-
generated sounds. It confirms prior findings that hospital
patients perceive their sleep to be inadequate mostly in
the early morning [58]. As we further discuss towards the
end of this paper, a systemic change and a shift in caregiving
activities could help postpone early awakenings. Some hos-
pitals, for example, skipped night treatments to facilitate long
sleep. Technological solutions which provide systematic knowl-
edge on how work shifts impact on the quality of the ward’s
soundscape and thus on patients’ sleepwould be able to inform
long-term structural interventions on the hospital organisation
towards improved patients’ sleep.

3.3 Integrated analysis

We now return to the patient data (questionnaire and
Fitbit-detected arousals), to see them in light of results
from the soundscape annotations. Recall the same audio
recording equipment was used throughout the data collec-
tion, in particular using the same microphone and level

Figure 7: Estimated disturbance by patient-generated sounds set against disturbance by personnel-generated sounds (behaviours and objects)
during a typical night. Values are accumulated Integrated Annoyance in time windows of 20 min with 50% overlap.
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settings for the preamplifier. In the acoustic analysis of
recordings, we calculated the root mean square (RMS) of
the audio signal across the duration of each recording.
While RMS is not immediately translatable to loudness
(which we could not measure due to the limitations
explained in Section 4.1), it can be used as a proxy mea-
sure. The three latent factors, “room,” “objects,” and
“self,” together with the number of “sleep disturbances,”
were compared against RMS of whole 30 s recordings pre-
ceding an arousal, and three variables obtained from
the annotations and ratings of the same recordings, i.e.
median RMS, median Annoyance (raw, as rated), and
median Integrated Annoyance.

We explored these data with a correlation analysis
using Spearman’s rho as the non-parametric statistic. See
Figure 8 for variable distributions.

Cross-correlation analysis showed that the number of
sound events in the annotations (mean across annotators)
did not show any significant relationship with any of the
RMS or Annoyance variables. This result suggests that
annotations were not systematically made because sounds
were loud or annoying: they were simply present and
heard. As Table 3 shows, the first latent factor of the EFA,
“Room,” was indeed significantly associated with the Raw
Annoyance ratings. However, the Integrated Annoyance
variable revealed a stronger relation (rho = −0.51, p =

0.0080**), and it might therefore be considered a better
candidate for a predictive model. Meanwhile, Raw Annoy-
ance was significantly related to the second factor, “objects”
(rho = 0.47, p = 0.016*). The third latent factor, “self,”was not
associated with any variable from the soundscape analysis.
The number of Fitbit-detected arousals was significantly

Figure 8: Distributions of variables in the correlation analysis. Histograms in top row: Three latent factors, and detected arousals. Bottom row: RMS
and Annoyance variables. Y-axes represent the relative density within bins.

Table 3: Cross-correlations between (rows) RMS and Annoyance variables from the soundscape analysis, and (columns) latent factors from the patient
questionnaire and number of Fitbit-detected arousals

EFA

Room Objects Self Arousals

Whole recordings RMS
Annotated events RMS (0.331) 0.42*

Annoyance, raw −0.462* 0.466*
Annoyance, integrated −0.513**

The correlation statistic, Spearman’s rho, is marked with ** if it has a p-value lower than 0.01, i.e., there is less than a 1/100 probability of a value this
large appearing spuriously, and * if the p-value is below 0.05, i.e., the probability is less than 1/20. One value in parenthesis shows the correlation for
one non-significant association, but with a p-value still less than 0.1. Other non-significant relationships have been blanked out for clarity.
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associated with RMS, a proxy for acoustic intensity (rho =

0.42, p = 0.023*).
Noting the strong negative relationship between the first

latent factor “room” and Integrated Annoyance (−0.513**), we
looked more closely at the association between Integrated
Annoyance, and each of the two ratings that most strongly
contributed to “room.” The correlations were found to be
non-significant at the level set for the test (alpha = 0.05),
both for “soundscape quality” (rho = 0.27, p = 0.18 ns) and
for staff voices (rho = −0.37, p = 0.064. ns). Recall that as
already seen in the EFA, ratings of staff voices and sounds-
cape quality were inversely related to one another (rho =

−0.71, p < 0.001***). In other words, patients found that higher
“soundscape quality” was associated with lower (or fewer)
“staff voices.” Then the first latent factor “room” was asso-
ciated negatively with soundscape quality (rho = −0.77***)
and positively with “staff voices” (rho = 0.81, p < 0.001***).

The RMS measurements of the whole 30 s recordings
as a whole were also considered in the analysis, but
showed no significant relationship to the latent factors or
detected arousal. This underlines what we have already
seen that a detailed analysis of the specific sound events
preceding an arousal has a better chance at predicting
sleep disturbances. Our present study has only employed
RMS as a proxy for loudness and no other sound descriptors.
As the significant correlation between RMS and arousal in
Table 3 suggests, median RMS of the specific sound events
preceding an arousal would probably be a valid predictor of
sleep disturbances, while a general RMS that does not take
event detection into account would not. Going further, we
propose that a predictive model should emulate a deeper
description of sound events in the given environment. Such
a model should, like the human annotators in our case
study, be able to determine (1) onset and offset of potential
events, and (2) their characteristics, via sonic information
retrieval, and from there, (3) estimate events by relevant
categories, and taking these factors into account produce
an estimate of (4) the Integrated Annoyance. Exactly how
to design this model will be the focus of future work.

4 Discussion

This study investigated the relationship between sound
events and perceived Annoyance levels within a hospital
ward during nighttime as part of patients’ sleep routine.
The primary objective was to categorise sound events,
assess their association with Annoyance, and relate them
to the subjective evaluation of the ward’s soundscape
obtained through patient questionnaires.

The analysis revealed that nighttime sounds in a typical
hospital ward primarily originated from patients (snoring,
coughing, breathing) and nursing personnel (talking, foot-
steps, medical alarms during procedures, interaction sounds
like moving trolleys). In addition, rustling of clothes (patient
movement) and activities related to patient care (changing
bed sheets) were identified as potential sleep disruptors. To
model the varying likelihood of these sound events dis-
rupting sleep, we focused on three key factors: perceived
Annoyance level, duration, and frequency of occurrence
throughout a typical night.

Our analysis identified patient-generated sounds, par-
ticularly snoring and breathing, as presenting the highest
Cumulative Annoyance. Speech generated by nursing staff
– which is an actively produced sound that could be pur-
posely controlled by the sound producer – also ranked high
in Annoyance. Notably, snoring emerged as the single most
annoying sound due to its frequent occurrence within the
dataset, thus confirming existing literature [38]. Interest-
ingly, both the patients who participated in the study (i.e.,
hospitalised listeners that hear the sound source at night-
time) and the annotators, who listened to the sounds “off-
context” and during daytime, concurred in identifying
snoring as the most annoying type of sound. This may be
due to the fact that patients who participated in the study
were not affected by serious pathologies but rather hospi-
talised for a short period of time to carry out medical tests
or similar. A further iteration of the study should, however,
investigate this point further and ideally involve patients
in the labelling task as “expert listeners.”

Reducing heavy snoring might be probably beneficial
for the snorer, but doing this is a hard nut to crack.
Mitigating the disturbance created for other patients in
the room would most easily be fixed by giving the heavy
snorer(s) a separate room, or giving the most snore-sensi-
tive a separate room. However, this would be a costly solu-
tion, and it is not always the case that patients snore
equally hard every night, and furthermore, occasionally
a light snorer might turn into a nighttime lumberjack.
Therefore, our analysis highlights that it is towards the
reduction of nursing personnel behaviour sounds, pri-
marily speech, that a sound-driven technological solution
should focus, to sustain short- and medium-term mitiga-
tion strategies among the hospital staff. Nevertheless, in a
forthcoming study, acoustic and psychoacoustic descrip-
tors of sound events (e.g., loudness and frequency spec-
trum) will be Integrated in the analysis to further explore
the role (and potential masking effects) that snoring sound
has in the ward’s soundscape.

Personnel behaviour sounds (primarily speech) fol-
lowed by patient sounds (notably snoring) and personnel
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object sounds (mechanical) exhibited the highest Integrated
Annoyance levels. These findings align with prior research
on the influence of both speech and mechanical sounds on
the hospital acoustic environments [20,24,17]. This is a cru-
cial result because, while snoring is an involuntary patient
behaviour during sleep, personnel-generated speech and
mechanical sounds are actively produced, primarily by hos-
pital staff during their work. Our previous research [41,26]
suggests that hospital professionals are often unaware of
their contribution to the overall soundscape and feel power-
less to change it. This highlights the need for long-term solu-
tions to raise nurses’ awareness of the sound environment.
Furthermore, a potential correlation exists between speech
by nursing personnel and snoring/breathing sounds from
patients: Increased speaking by staff could contribute to a
more disruptive sleep environment for patients, leading to
lighter and lower-quality sleep.

A lower soundscape quality could also be responsible
for the patient’s difficulty in falling asleep or being in deep
sleep, as answers to the patients’ questionnaires highlight.
Again, both patients’ questionnaires and the analysis of a
“typical night” point at the same sound sources as having
the highest potential to disrupt sleep. While these results
confirm the literature on sound-induced sleep disturbances
[35,59,60], this assumption will have to be further explored
by collecting new data within the specific timeframes and
observations and interviews with the hospital’s personnel.

4.1 Limitations of the present study and
future studies

More research is needed on defining the sound sources
that disturb sleep and what conditions are there for these
sound events to be salient enough to cause perceived
Annoyance. For example, we need to take a closer look at
masking effects, such as when snoring (a broad-band noisy
sound with a low-frequency centroid) masks breathing
(which typically has a higher centroid). Due to the restric-
tions imposed by the hospital organisation on access to
patients’ rooms and data collection, in this study, we
were unable to evaluate the role of loudness since it was
not possible to access an empty patient’s room to collect
baseline measurements. However, we are interested in
studying loudness as a predictor for sound Annoyance in
the context of nighttime sleep. In a new iteration of the study,
we are planning to investigate the correlation between the
level of Annoyance by snoring sounds and loudness during
the identified time slot, the Annoyance level and loudness of
co-occurring sounds, and other factors already identified in
the literature that characterise sounds that tend to disturb

sleepers (e.g., continuous, impulsive, intermittent sound mor-
phology, and frequency spectrum [38,39]). Individual noise
sensitivity would also need to be further taken into account
in a new iteration of the study (e.g., by including Weinstein’s
index [61,62]) as previously applied by one of the authors [57].
In this study, we engaged human annotators to label sound
sources recorded in the hospital ward at nighttime. In a forth-
coming work, we will be looking into automatic sound event
detection [63] with machine listening methods, for example,
evaluating different pre-trained audio neural networks [64]
against the ground truth that we have established.

Sound is an invisible phenomenon which makes it dif-
ficult for the people to be able to understand and assess
cause and effect. Any technological intervention to make
sound and its contextual knowledge accessible to users will
rely on computational models that are able to not only
measure the acoustic quality but also provide actionable
information. The fields of sound and music computing, and
acoustics engineering, provide some insights regarding
speech recognition, but there are currently little to support
recognition of everyday sound events; especially predicting
those that can be harmful to people’s basic needs such as
sensory comfort and sleep [65]. The insights gained from this
study on Annoyance caused by everyday sounds during
sleep will inform the development of an algorithm for the
automatic detection of sleep-disturbing events in multi-
patient hospital wards. This algorithm will be Integrated
into a comprehensive, design-driven solution aimed at
raising awareness among healthcare staff about the
impact of specific sound sources on patient sleep quality.
In addition, it will support the development of interven-
tions to mitigate the negative effects of sound-induced
sleep disruption.

5 Conclusion and implications for
design

Our aim in this article was to understand which sound
sources in a hospital ward at nighttime are perceived as
annoying, and how such perceived Annoyance may underlie
disturbed patient sleep. For that, we investigated what types
of sounds are there in the hospital and what causes them
(e.g., actions, people) through qualitative and quantitative
approaches. First, we identified and classified sound sources
causing disturbance to sleep. We also explored the possibi-
lity to model a “typical night” and estimated disturbance by
sound types. In light of our findings and discussions, we will
now explore how such an outcome can be effectively incor-
porated in the design of a human-centred and data-centric
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system that maps sleep-relevant sound sources and commu-
nicates the level of collective and individual Annoyance
caused by such sounds.

Ideally, we would recommend a novel technological
solution that aims to increase the nurses’ awareness of
unwanted sounds (i.e., sounds that can disrupt patients’
sleep) by providing easy to understand information on
what sounds are generated by nurses’ behaviour that can
be acted upon. However, for such a system to be Integrated
into the daily lives of nurses and patients, the system must
have extensions and concrete presence in the hospital
wards. However, hospital wards might not need to have
permanent installation of microphones. Instead, we sug-
gest the aim should be a flexible kit with several networked
small devices that can be deployed when and where this
information is most needed. Each device might be a small box
that contains microphones, environmental sensors, a micro-
computer, a network shield, and a battery. They would con-
tinuously measure, pre-process, and relay information about
the acoustic quality, current “mix” of sound events, and esti-
mate patients’ sleep quality. Medical staff would receive low-
density (i.e., background), information in normal situations,
that would increase to foreground alerts before any potential
harm to an individual patient or the general environmental
quality arises. This would provide relevant actionable informa-
tion for nurses to be proactive in maintaining sonic hygiene in
the ward. Thus, such a systemwould be able tomitigate sound-
induced harm in the short term.

To inform the design of such a technological solution, a
computational model of Annoyance by sound in hospital
wards need to be developed. This model can output specific
footprints [27,30] of sound events that are harmful to sleep
in the context of hospital wards at night. The model is
meant to be Integrated in a sound-driven design solution
to increase awareness of the nursing staff so that they can
take action to mitigate the negative impact on patients’
sleep. This model can provide the background for real-
world applications that motivate sound-conscious beha-
viour change on different levels.

So far, we learnt that human speech, alarms, snoring,
running taps or toilet routines, medical devices, and med-
ical alarms, human interactions and footsteps or hand
movements are likely to disturb sleep. For example, exces-
sive speech can be actively mitigated through behavioural-
change interventions and training of nursing staff [20,24],
provided that nursing staff can be motivated to do so;
crucially, by having access to information on the footprint
of each sound category. Personnel-generated object sounds
such as furniture moving (e.g., doors opening and closing;
compare the discussion in the study by Lindborg [49] about
improving restaurant environments) can be similarly

addressed on the spot as part of behavioural change pro-
cess. Knowing more about sound also offers a platform
for conversation regarding expectations, preferences, and
possibilities. More interestingly, the system could also be
used to engage the hospital management and industry
stakeholders in defining broader guidelines that include
the redesign of the architectural indoor space of hospital
wards, the tools used by staff (such as delivery trolleys),
and medical alarms. The actionable information provided
by the system would be valuable to hospital managers as
they seek a better patient experience, hence can make
informed decisions on the following:
− Optimising nighttime routines (e.g., timing of medical

interventions).
− Medical device purchases (e.g., equipment with alarms

that can be silenced at the patient’s bedside).
− Reorganising and refurbishing interior design of wards

for improved acoustic comfort.
− Optimising on a daily basis the equal allocation of rooms

according to needs (e.g., grouping patients with high noise
sensitivity together with “silent sleepers,” or separating
patients with sleep apnea who are likely to snore and
disturb others).

Such measures, based on a sound-informed rationale,
would answer several issues related to sleep and sound.
However, a more comprehensive approach is needed to
support patient sleep. The inpatients’ feeling of unfami-
liarity or even hostility when placed in a hospital environ-
ment will always be a problem, and the acoustic reality
plays no little part. When possible, before a pre-planned
admission (e.g., giving birth or having a major surgery),
patients could be gently and gradually familiarised with
the hospital soundscape alreadywhile at home: for example,
getting a certain dose of hyper-sensitization training
towards sounds that are likely to disturb their sleep when
they are in convalescence. Our research already provides
insights into what type of sounds incoming patients would
need to be familiarised with. Sometimes it will be difficult to
control sonic nuisances, such as other patients’ snoring or
nurses providing care-giving activities for other patients. In
such cases, masking could be used as a band-aid to make
highly annoying sounds less audible and to reduce their
impact. Masking can be done in manyways: through passive
acoustics (e.g., absorbent room dividers) or using active
(semantic) maskers (e.g., playback of music or soundscape
elements such as birdsong). Acoustic interventions can be
made in shared, social acoustic spaces such as wards, or for
individualised spaces (e.g., nearfield surround sound, head-
phones, earbuds, earplugs, earmuffs; either passive or with
active noise cancelling). The ideal recipe might be a
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combination of both. It will be especially important during
nighttime to provide a technical solution that is appropriate
to a patient’s sleep routine (i.e., falling asleep, light sleep, and
deep sleep). In this study, we only showed that it is possible to
detect and identify sound sources and that it is important to
integrate Annoyance as a basic response. More research is
needed to further develop an understanding of how patients
in hospital wards are affected by sound.
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