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Abstract. The large amount of data generated in different fields, among which 
bioimage informatics and digital humanities, is increasingly requiring appropri-
ate automatic processing techniques, such as computer vision, data mining and 
particular visualisation tools, to extract information out of complexity and to 
clearly display it. 

This has led, in digital humanities, to the use of pattern recognition tech-
niques similar to those applied in biology, chemistry and medical studies, but 
where patterns to be analysed and segmented are extracted from texts, images, 
audio-visual and online media rather than from cells and tissues. Regularities 
can be recognised through machine learning, based on artificial neural networks 
that are modelled, to some extent, after the brain’s structure, showing a variety 
of analogies between natural and artificial world. 

These processes can also add information to 3D models for cultural heritage: 
data mining technologies allow information retrieval from archives and reposi-
tories, as well as the comparison of data in order to better understand the con-
text of – and relationships between – works of art, thus producing knowledge 
enhancement.  

Various tools to describe complexity are here analysed not only for their ed-
ucational aim, but also for their heuristic value, allowing new discoveries and 
connections between different disciplines. 

Keywords: Bioimages learning, image-based education, visual simulation and 
modelling learning, visual-based research methods, visual studies. 

1 Introduction 

1.1 Artificial neural networks 

The extraction of useful information out of complexity, a principle of both bi-
oimage informatics and digital humanities, generates a large amount of data through 
automatic processing, namely techniques such as computer vision, data mining and 
particular visualisation tools, able, as Herbert Simon would have said, “to find pattern 
hidden in apparent chaos” (Simon 1968). 
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These kinds of operations are increasingly common now, considering that we can 
easily access big data in many different fields, in both the natural and the artificial 
domain. One of the most used models to analyse complex data is based on artificial 
neural networks, which employ machine learning, one of the major branches of artifi-
cial intelligence. 

When we speak of artificial neural networks (Wang 2003; Bishop 2006), we refer 
to systems whose aim is to process information simulating, as much as possible, the 
functioning of biological networks, where interconnected computers play the role of 
(simplified) neurons acquiring information from the external world, elaborating it and 
giving an output useful for data analysis and decision-making. 

In particular, they are composed of input, hidden and output nodes, each of which 
is activated if the received signal is higher than an activation threshold and is con-
nected with the others through weighted connections (fig. 1). The number of links 
(synapses) can also increase or decrease based on the type of stimulus. 

 
Fig. 1. Three phases of the development of artificial neural networks, from the single layer 
perceptron (1960s) to the more complex recurrent neural network (1990s), where feedback with 
a memory unit becomes possible (1990s). Author’s editing based on https://www.allerin.com/ 
blog/3-types-of-neural-networks-that-ai-uses (accessed 9 June 2021). 
 

This has become the standard approach to data analysis in science and engineer-
ing, but also in many other fields dealing with big data and transforming our way of 
approaching information. 

The development of these technologies has been possible mainly for two reasons: 
on the one hand, the exponential growth of data collected and accessible online; on 
the other hand, the development of more powerful computers (especially in relation to 
GPUs) able to process this large amount of data and to analyse them at a morphologi-
cal, structural and dynamic level. 
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1.2 Patterns 

The term “pattern” can be used as a synonym of “texture”, thus indicating an ar-
rangement of shapes and colours seen physically, for example on the fur of animals or 
on clothes. More in general, a pattern is a repetition of a sequence in a set of raw data: 
in the context of this research, we primarily refer to patterns observed mathematically 
through algorithms and used to identify regularities in language, images or classes of 
objects (Haken 2004). 

Machine learning algorithms use pattern recognition to process data according to 
statistics and especially using the nearest neighbour search, an automatic process that 
makes it possible, given a single point in a set, to find its closest or most similar 
neighbours within a certain distance. 

 We can see, therefore, that the classification of data can be grounded on already 
gained knowledge, but also on statistical information automatically extracted from 
patterns. 

The application potential of these processes ranges from speech recognition and 
speaker identification to multimedia document recognition, automatic biological anal-
ysis and medical diagnosis, where raw data are converted in a form that is manageable 
by a machine, involving classification and clustering (Levenberg, Neilson, and 
Rheams 2018). 

In classification, a class label is assigned to a pattern based on an abstraction gen-
erated using a set of training patterns and domain knowledge (supervised learning), 
whereas clustering generates a partition of data based on the recognition of patterns 
that helps decision-making (unsupervised learning). Supervised and unsupervised 
learning are the main machine learning paradigms together with reinforcement learn-
ing, which helps a computer to learn appropriate behaviour through repeated “trial-
and-error” interactions with a dynamic environment where a decision depends on the 
current state of a system and determines the following one. 

Pattern recognition should recognise familiar patterns quickly and accurately, even 
if they are seen from different angles or partly hidden. It should also recognise and 
classify unfamiliar objects. 

The process of learning, through which a system is trained and becomes adaptable 
to accurately give results, depends on which algorithms are used on a dataset that is 
usually divided in two categories: 

a) A training set, such as a series of images used to train the system and build a 
model; 

b) A testing set, to test the system and verify if it is correct. 
These are the main features of artificial neural networks and pattern recognition 

techniques that are used in both natural and artificial domains and that have also 
shown similarities with other models employed to analyse complexity, as we will see 
in the next paragraphs. 
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1.3 Short history 

The application of deep learning technologies has been one the most important 
paradigm shifts in the last years, gaining popularity especially in relation to artificial 
neural networks. 

The first mathematical model of a neuron was proposed in 1943 by Warren 
McCulloch and Walter Pitts: multiple input data were transformed into a single output 
according to thresholds (McCulloch and Pitts 1943); the artificial neuron could also 
be combined with other elements creating a network to solve simple Boolean func-
tions. D. O. Hebb in 1949 proposed the first learning hypotheses based on the brain’s 
complex models (Hebb 1949). In the same years, information theory was proposed 
(Shannon 1948; Shannon and Weaver 1949), as well as mathematical models to ac-
count for complexity (Waddington 1940; Turing 1952). 

In 1958 Frank Rosenblatt proposed the “perceptron” (Rosenblatt 1958), the first 
scheme of neural network that was able to assign weights to properties by learning 
from examples (fig. 1 left): it is a probabilistic model using pattern recognition. The 
interest for similar models continued for a decade and had a strong influence in the 
field of computational geometry (Minsky and Papert 1969), even though many prob-
lems could not be solved by the perceptron model. 

We have to wait until 1986 for the enhancement of these systems through the error 
back-propagation algorithm (Rumelhart, Hinton, and Williams 1986), that generalises 
the learning algorithm of the perceptron, and until the 1990s (Schmidhuber 1992) for 
the recurrent and multi-layer neural networks (fig. 1 right), which have been applied 
to image and 3D object recognition.  

Artificial neural networks, however, were hard to train and they underwent a peri-
od of relative crisis until, between 2009 and 2012, computational neural networks 
began winning prizes in competitions, approaching human performance in many tasks 
(Graves 2012; Krizhevsky, Sutskever, and Hinton 2017): from that moment on, ma-
chine learning has gained ground in many different fields. 

2 Some applications in different domains 

2.1 Biology, chemistry, medical studies 

Techniques like nearest neighbour search and segmentation are widely used for 
pattern recognition in biology, chemistry and medical studies (Coelho et al. 2010; 
Meijering 2020), where they are often combined with visualisation in false colours to 
better identify the segmented areas (tissues, cells, proteins…). 

Microscopy and image analysis are used for both quality and quantification pur-
poses in complex model systems, involving processes like the isolation of cells and 
tissues at a single-cell resolution and the labelling of different phenomena. 

Biological algorithms are designed in order to allow the following operations: 
a) Image restoration and pre-processing, with the aim of starting with good data. 

The most frequent operations in this phase are cropping (to reduce the area of in-
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terest), inversion (the creation of negative images), filtering (to extract signifi-
cant data), colour extraction, illumination correction, elimination of blurring; 

b) Segmentation, that allows the identification of objects: single entities are meas-
ured, individual cells and structures are identified (object detection), thresholds 
are fixed based on the frequency of pixel values, shapes that overlap each other 
are divided (untangling); 

c) Tracking, i.e. observing the movement of objects over time; 
d) Object classification, where relevant properties are identified; 
e) Quantification, where relevant properties are quantified; 
f) Visualisation, often using false colours, to better identify the segmented areas. 

The development of these processes has surely been influenced by research on the 
brain, but even the opposite has happened: models such as “connectionism” 
(Rumelhart et al. 1968), applied in cognitive science, use artificial neural networks to 
explain the functioning of the brain: the analogy, rather than between mind and com-
puter, is between natural and artificial neural networks distributing the various activi-
ties through connections and computational units, in a behavioural framework based 
on the connection between stimulus and response. 

2.2 Glass: from liquid to solid “amorphous” state 

Artificial neural networks are also giving an impulse on studies trying to identify 
the patterns of transformation of glass from liquid to solid “amorphous” state (Bapst 
et al. 2020), where the molecules remain in a seemingly disordered state, much like a 
liquid. It is therefore fundamental to understand how atomic-scale properties define 
the visible features of many solid materials. 

The physical aspect of glass is predicted with the aid of a structure with nodes rep-
resenting particles and edges representing interactions. Each particle in the simulation 
travels a distance and, after several iterations, a graph network takes shape. 

 

 
Fig. 2. Artificial neural networks used to study the passage of glass from liquid to solid “amor-
phous” state. The coloured spots represent the results obtained with artificial neural networks, 
whereas the circles represent the actual behaviour of glass molecules. The model is accurate 
when circles are close to the purple or blue spots. Author’s editing based on (Bapst et al. 2020). 
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Several datasets are constructed corresponding to predictions of mobility for dif-
ferent time spans and temperatures. These have proved to be quite reliable compared 
to reality, even though the accuracy decreases when time spans increase (fig. 2). 

2.3 Digital Humanities 

Similar methods are used in digital humanities (Warwick, Terras, and Nyhan 
2012), where patterns to be analysed and segmented are extracted from texts or, 
sometimes, from images, audio-visual and online media. Regularities can be recog-
nised through machine learning, based on artificial neural networks, showing a variety 
of analogies between natural and artificial world, as happens in many studies focusing 
on networks (Buchanan 2004). 

Data and text mining allows the discovery of patterns in large datasets from where 
information is extracted with methods bound to machine learning, statistics and data-
base systems. This constitutes the analysis step of the “knowledge discovery in data-
bases” process (Frawley, Piatetsky-Shapiro, and Matheurs 1992). It doesn’t only in-
volve the act of extracting knowledge, but also – similarly to bioimage analysis – 
database and data management processing, model and inference considerations, seg-
mentation, classification, post-processing, visualisation and online updating. 

The scope of this discipline is really wide if we think of information that can be 
extracted from digital archives and that can be connected through standardised tech-
nologies involving linked open data in the “semantic web” context (Berners-Lee, 
Hendler, and Lassila 2001). 

2.4 Digital Heritage Studies 

These processes can also add information to 3D models for cultural heritage: data 
mining technologies allow information retrieval from archives and repositories, as 
well as the comparison of data in order to better understand the context of – and rela-
tionships between – works of art, thus producing knowledge enhancement: the chal-
lenging opportunity represented by automatic visual retrieval makes it possible to 
match images based not on standardised keywords as happens with linked open data, 
but on visual information, a task whose “complexity calls for a truly interdisciplinary 
endeavor” (Bell and Ommer 2016). 

Segmentation can be done by identifying patterns in 3D models, both automatical-
ly and with the help of the human eye, thus classifying the different components hier-
archically according to “ontologies”, which can be used to enhance interoperability in 
virtual research environments (Statham 2019; Champion and Rahaman 2020). Visual-
isation devices become then relevant, as well as in biology, in dealing with online 
platforms where the shared models have to comply with principles mainly deriving 
from the Gestalt theory and the “semiology of graphics” (Bertin 1967; Tufte 1990). 
As an example, when we refer to hypothetical reconstructions of unbuilt or destroyed 
artefacts, visualisation issues arise right in the use of false colours to illustrate the 
segmentation in different temporal phases or levels of uncertainty. 
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The aim of these tools is surely educational, but also heuristic, allowing new dis-
coveries and connections between data coming from different archives or virtual re-
search environment that can be easily shared online. As an example, machine learning 
is already used by Google Arts and Culture, with the aim of protecting our past and 
cultural heritage1. 

3 Modelling complex systems 

Machine learning is a field in constant expansion and we have seen that many dif-
ferent phenomena can be analysed through neural networks: the behaviour of granular 
materials, biological systems, social phenomena, texts, images and cultural heritage. 
However, it is not the only model capable of that, even though now it is the most suc-
cessful one. 

The examples that we have seen are based on local constraints where the position 
of some elements inhibits the motion of others, in a complex and cooperative dynam-
ics: this is similar to the mechanism of reaction-diffusion models, basically composed 
of two substances, an activator and an inhibitor, that react between them and diffuse 
according to the concentration of the same substances in the neighbourhoods. An 
example of this is Alan Turing’s morphogenetic model (Turing 1952), where the sub-
stances are called “morphogens” and are considered the responsible not only for the 
differentiation of an embryo into a living being, but also for the appearance of an 
actual pigmentation pattern on animals. The model has also been used to account for 
the development and interaction between cities (Pumain 1998; Allen and Sanglier 
2010), as well as the behaviour of ants or the formation of sand dunes (Ball 2015). 

This ability of self-organisation is also shared with multi-agent (or self-organising) 
systems (Wooldridge 2009), which are computerised systems composed of many 
interacting software agents able to perform particular tasks. Their application to ma-
chine learning has also given rise to “agent mining” (Cao, Gorodetsky, and Mitkas 
2009). The goal is to search for the explanation of a complex phenomenon (such as 
online trading or social structure modelling) into the collective behaviour of these 
agents that act according to simple rules.  

These models are also close to cellular automata (Wolfram 2002) and L-systems 
(Prusinkiewicz and Lindenmayer 1990), where the iteration of a simple rule through 
time is studied. The rule only depends on the value of a parameter assigned to an ele-
ment compared to the values of its neighbours, something that reminds us the nearest 
neighbour search, but also the “diffusion” phase in reaction-diffusion models. 

The shared framework of these models also involves information theory (Shannon 
1948; Shannon and Weaver 1949), network theory (Buchanan 2004) and chaos theory 
(Lorenz 1963), helping us identify the similarities (fig. 3) between these attempts to 
describe complex systems with models that remain simplifications of reality, but still 
they can be useful (Box 1976). 
                                                             
1 Some of the experiments performed by Google Arts and Culture in relation to the use of artificial intel-

ligence for cultural purposes can be found on: https://artsandculture.google.com/story/unlock-culture-at-
home-with-machine-learning/kwKSLHCd3edAIg (accessed 9 June 2021). 
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Fig. 3. Visual and conceptual analogies between different phenomena that have been described 
making use of more or less complex algorithms. From top left to bottom right: the representa-
tion of a neuron, an artificial neural network scheme, an L-system simulating the growth of a 
plant, a Wolfram elementary cellular automaton, an urban growth simulation, three different 
Turing patterns. Author’s editing based on (Turing 1952; Wolfram 2002; Raimbault, Banos, 
and Doursat 2016), http://paulbourke.net/fractals/lsys/ (accessed 9 June 2021). 

4 Conclusions 

In this short overview, we have seen a wide range of models and applications that 
have not only a primary role in the educational field, but also an incredible heuristic 
power in extracting data out of the complexity of the real world and classifying them, 
thus allowing new discoveries and helping manage large amounts of data. This is the 
reason why these tools are widely employed by giants of the web such as Google, 
Facebook, Apple, etc. who have heavily invested in machine learning to label and 
extract information from images, texts and multimedia. 

Machine learning has shown its advantages not only in quantitative predictions, 
but also in qualitative understanding. Reality is undoubtedly far more complex than 
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the most up-to-date artificial neural network, which still requires – and will probably 
continue to require – the presence of man. We might therefore conclude that these 
models remain a way to augment, rather than replace, human understanding. 
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