Given three segments OP1,OP2,OP3 in a plane ω, which are not contained in a line, we find a simple necessary and sufficient condition for the existence of two distinct ellipses centered at O and circumscribing the three ellipses having as conjugate semi-diameters the pairs (OP1,OP2), (OP2,OP3) and (OP3,OP1). We prove this result by showing that it is equivalent to the existence of a secondary Pohlke’s projection closely related to the (always existing) projection given by Pohlke’s fundamental theorem of oblique axonometry.

A note on a secondary Pohlke’s projection

MANFRIN, RENATO
2021-01-01

Abstract

Given three segments OP1,OP2,OP3 in a plane ω, which are not contained in a line, we find a simple necessary and sufficient condition for the existence of two distinct ellipses centered at O and circumscribing the three ellipses having as conjugate semi-diameters the pairs (OP1,OP2), (OP2,OP3) and (OP3,OP1). We prove this result by showing that it is equivalent to the existence of a secondary Pohlke’s projection closely related to the (always existing) projection given by Pohlke’s fundamental theorem of oblique axonometry.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/299546
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact