The costs associated with the management of healthcare systems have been subject to continuous scrutiny for some time now, with a view to reducing them without affecting the quality as perceived by final users. A number of different solutions have arisen based on centralisation of healthcare services and investments in Information Technology (IT). One such example is centralised management of pharmaceuticals among a group of hospitals which is then incorporated into the different steps of the automation supply chain. This paper focuses on a new picking workstation available for insertion in automated pharmaceutical distribution centres and which is capable of replacing manual workstations and bringing about improvements in working time. The workstation described uses a sophisticated computer vision algorithm to allow picking of very diverse and complex objects randomly available on a belt or in bins. The algorithm exploits state-of-the-art feature descriptors for an approach that is robust against occlusions and distracting objects, and invariant to scale, rotation or illumination changes. Finally, the performance of the designed picking workstation is tested in a large experimentation focused on the management of pharmaceutical items.

AN AUTOMATED PICKING WORKSTATION FOR HEALTHCARE APPLICATIONS

PRATI, ANDREA;
2013

Abstract

The costs associated with the management of healthcare systems have been subject to continuous scrutiny for some time now, with a view to reducing them without affecting the quality as perceived by final users. A number of different solutions have arisen based on centralisation of healthcare services and investments in Information Technology (IT). One such example is centralised management of pharmaceuticals among a group of hospitals which is then incorporated into the different steps of the automation supply chain. This paper focuses on a new picking workstation available for insertion in automated pharmaceutical distribution centres and which is capable of replacing manual workstations and bringing about improvements in working time. The workstation described uses a sophisticated computer vision algorithm to allow picking of very diverse and complex objects randomly available on a belt or in bins. The algorithm exploits state-of-the-art feature descriptors for an approach that is robust against occlusions and distracting objects, and invariant to scale, rotation or illumination changes. Finally, the performance of the designed picking workstation is tested in a large experimentation focused on the management of pharmaceutical items.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/116288
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact