In the present paper, a non-linear numerical study on the 13th century masonry bell tower of the church of San Pietro di Coppito is described. The aim is to have an insight into the causes at the base of the partial collapse suffered by the structure during the L’Aquila earthquake in 2009. To this aim, two different numerical analyses have been performed namely non-linear static (pushover) and limit analysis. In both cases, the same full 3D detailed FE model of the structure is adopted, changing the seismic load direction and assuming different distributions of the equivalent static horizontal load. When dealing with the FEM incremental analysis, a commercial code is utilized assuming for masonry a smeared crack isotropic model. For limit analysis, a non-commercial full 3D code developed by the authors is utilized. It provides limit good estimates of limit loads and failure mechanisms, to compare with standard FEM results. From numerical re-sults, the role played by the actual geometry and by the masonry mechanical characteristics of the tower is envisaged, as well as a detailed comparison of failure mechanisms provided by the incremental FEM and limit analysis is provided. In all cases, the numerical analysis has given a valuable picture of damage mechanisms which can be compared with actual damage patterns so providing useful hints for the introduction of structural monitoring.
Seismic Behavior of the San Pietro di Coppito Church Bell Tower in L'Aquila
MILANI, GABRIELE;RUSSO, SALVATORE;PIZZOLATO, MARCO;TRALLI, ANTONIO MICHELE
2012-01-01
Abstract
In the present paper, a non-linear numerical study on the 13th century masonry bell tower of the church of San Pietro di Coppito is described. The aim is to have an insight into the causes at the base of the partial collapse suffered by the structure during the L’Aquila earthquake in 2009. To this aim, two different numerical analyses have been performed namely non-linear static (pushover) and limit analysis. In both cases, the same full 3D detailed FE model of the structure is adopted, changing the seismic load direction and assuming different distributions of the equivalent static horizontal load. When dealing with the FEM incremental analysis, a commercial code is utilized assuming for masonry a smeared crack isotropic model. For limit analysis, a non-commercial full 3D code developed by the authors is utilized. It provides limit good estimates of limit loads and failure mechanisms, to compare with standard FEM results. From numerical re-sults, the role played by the actual geometry and by the masonry mechanical characteristics of the tower is envisaged, as well as a detailed comparison of failure mechanisms provided by the incremental FEM and limit analysis is provided. In all cases, the numerical analysis has given a valuable picture of damage mechanisms which can be compared with actual damage patterns so providing useful hints for the introduction of structural monitoring.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.