This paper presents ananalytical method for evaluating the capacity curve of masonry buildings according to non-linear static analysis. This method splits the building into stories, and the vertical structures of each story into masonry panels, which are analyzed individually by a new push-over analysis. The behavior of each panel is reproduced with an evolutive strut-and-tie model, which simulates the uncracked and cracked behavior of the panel subjected to a vertical constant force and a lateral force that increases up to the complete development of the failure mechanism. The evolutive strut-and-tie model provides the capacity curve of the panel. The composition of the capacity curves of all the panels of a story provides the capacity curve of this story. The capacity curves of all the stories of the building can be used to obtain either the maximum drift that the building can withstand or the behavior factor of the structure. Either outcome allows the specific dissipation capacity and overstrength of the masonry building to be considered in the seismic analyses, which provides ultimate limit state verifications with more reliability. The proposed method is applied to a school building. The comparison between seismic safety assessed with this method and with a linear dynamic analysis, all other parameters being equal, shows that the latter approach is overly-conservative. In fact, the specific inelastic capacity, which only the former approach can consider, influences greatly the seismic behavior of the case study.

Non-linear static analysis of masonry buildings based on a strut-and-tie modeling

FORABOSCHI, PAOLO;VANIN, ALESSIA
2013-01-01

Abstract

This paper presents ananalytical method for evaluating the capacity curve of masonry buildings according to non-linear static analysis. This method splits the building into stories, and the vertical structures of each story into masonry panels, which are analyzed individually by a new push-over analysis. The behavior of each panel is reproduced with an evolutive strut-and-tie model, which simulates the uncracked and cracked behavior of the panel subjected to a vertical constant force and a lateral force that increases up to the complete development of the failure mechanism. The evolutive strut-and-tie model provides the capacity curve of the panel. The composition of the capacity curves of all the panels of a story provides the capacity curve of this story. The capacity curves of all the stories of the building can be used to obtain either the maximum drift that the building can withstand or the behavior factor of the structure. Either outcome allows the specific dissipation capacity and overstrength of the masonry building to be considered in the seismic analyses, which provides ultimate limit state verifications with more reliability. The proposed method is applied to a school building. The comparison between seismic safety assessed with this method and with a linear dynamic analysis, all other parameters being equal, shows that the latter approach is overly-conservative. In fact, the specific inelastic capacity, which only the former approach can consider, influences greatly the seismic behavior of the case study.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/134689
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 42
social impact