The aim of this research regards the evaluation of mechanical performance of a prototype panel made by steel fiber reinforced concrete, SFRC, on the top, and fiber reinforced pultruded sandwich panel, GFRP, on the bottom, subjected to combined moment-shear actions through four-bending test. Two different mechanical solutions were used for the connection of the panels. A first steel connection previously designed and a second one with resin applied uniformly on the surface of GFRP panel. The SFRC-G panel involves the analysis of the weakness of GFRP material due to its very low deformability, the risk of the local instability and the elastic brittle behaviour till the collapse, while steel is obviously characterized by elastic-plastic curve. However in the test proposed the ultimate limit state (SLU) involves first of all the loss of bond strength between materials. The panel's length/thickness ratio has been previously designed to give prominence to flexural-shear combined actions and in verifying the connection's capacity. © (2014) Trans Tech Publications, Switzerland.

Performance of different connections for a SFGP-RC prototype panel

BOSCATO, GIOSUE';DAL CIN, ALESSANDRA
2014-01-01

Abstract

The aim of this research regards the evaluation of mechanical performance of a prototype panel made by steel fiber reinforced concrete, SFRC, on the top, and fiber reinforced pultruded sandwich panel, GFRP, on the bottom, subjected to combined moment-shear actions through four-bending test. Two different mechanical solutions were used for the connection of the panels. A first steel connection previously designed and a second one with resin applied uniformly on the surface of GFRP panel. The SFRC-G panel involves the analysis of the weakness of GFRP material due to its very low deformability, the risk of the local instability and the elastic brittle behaviour till the collapse, while steel is obviously characterized by elastic-plastic curve. However in the test proposed the ultimate limit state (SLU) involves first of all the loss of bond strength between materials. The panel's length/thickness ratio has been previously designed to give prominence to flexural-shear combined actions and in verifying the connection's capacity. © (2014) Trans Tech Publications, Switzerland.
2014
9783038350422
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/226907
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact