The seismic events in the last decades evidenced the vulnerability of the architectural heritage with respect to these phenomena. Therefore, timely provisional and permanent interventions are often required in post-seismic scenarios. In response to the call for more efficacious solutions, a great deal of interest has been given to glass fiber-reinforced polymers (GFRPs) composite. GFRP composites offer the advantage of high strength, low self-weight and durability. This research proposes some first evaluations on the dynamic behaviour of pultruded FRPs (Fiber Reinforced Polymers) strut and tie spatial structure for seismic protection of historical building heritage. The dynamic identification has been carried out using the ambient vibrations test to measure the mode of vibration, frequencies, displacements and damping ratios of the structures. The Operational Modal Analysis (OMA) has been carried out to identify the modal characteristics through poly-reference Least Square Complex Frequency-domain (pLSFC) estimator. Basing on the experimental results the dissipative capacity has been evaluated through the calculation of the behaviour factor q. The experimental dynamic parameters were used to calibrate a numerical finite element model employed under the hypothesis of kinematic equivalence to evaluate the q factor considering the elastic-brittle behaviour of FRP material. The dissipative capacity of structure was assigned to the global geometric configuration - frame with concentric diagonal bracings - through the strength hierarchy criteria locating the dissipative zones in the tensile diagonals. The analysis was carried out considering some typological variations to investigate the variability of the behaviour factor q.

Dynamic parameters of pultruded GFRP structures for seismic protection of historical building heritage

BOSCATO, GIOSUE';RUSSO, SALVATORE
2015-01-01

Abstract

The seismic events in the last decades evidenced the vulnerability of the architectural heritage with respect to these phenomena. Therefore, timely provisional and permanent interventions are often required in post-seismic scenarios. In response to the call for more efficacious solutions, a great deal of interest has been given to glass fiber-reinforced polymers (GFRPs) composite. GFRP composites offer the advantage of high strength, low self-weight and durability. This research proposes some first evaluations on the dynamic behaviour of pultruded FRPs (Fiber Reinforced Polymers) strut and tie spatial structure for seismic protection of historical building heritage. The dynamic identification has been carried out using the ambient vibrations test to measure the mode of vibration, frequencies, displacements and damping ratios of the structures. The Operational Modal Analysis (OMA) has been carried out to identify the modal characteristics through poly-reference Least Square Complex Frequency-domain (pLSFC) estimator. Basing on the experimental results the dissipative capacity has been evaluated through the calculation of the behaviour factor q. The experimental dynamic parameters were used to calibrate a numerical finite element model employed under the hypothesis of kinematic equivalence to evaluate the q factor considering the elastic-brittle behaviour of FRP material. The dissipative capacity of structure was assigned to the global geometric configuration - frame with concentric diagonal bracings - through the strength hierarchy criteria locating the dissipative zones in the tensile diagonals. The analysis was carried out considering some typological variations to investigate the variability of the behaviour factor q.
2015
9783038352037
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/258535
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact