The mean-shift algorithm is an iterative method of mode seeking and data clustering based on the kernel density estimator. The blurring mean-shift is an accelerated version which uses the original data only in the first step, then re-smoothes previous estimates. It converges to local centroids, but may suffer from problems of asymptotic bias, which fundamentally depend on the design of its smoothing components. This paper develops nearest-neighbor implementations and data-driven techniques of bandwidth selection, which enhance the clustering performance of the blurring method. These solutions can be applied to the whole class of mean-shift algorithms, including the iterative local mean method. Extended simulation experiments and applications to well known data-sets show the goodness of the blurring estimator with respect to other algorithms.

Design of Blurring Mean-Shift Algorithms for Data Classification

GRILLENZONI, CARLO
2016-01-01

Abstract

The mean-shift algorithm is an iterative method of mode seeking and data clustering based on the kernel density estimator. The blurring mean-shift is an accelerated version which uses the original data only in the first step, then re-smoothes previous estimates. It converges to local centroids, but may suffer from problems of asymptotic bias, which fundamentally depend on the design of its smoothing components. This paper develops nearest-neighbor implementations and data-driven techniques of bandwidth selection, which enhance the clustering performance of the blurring method. These solutions can be applied to the whole class of mean-shift algorithms, including the iterative local mean method. Extended simulation experiments and applications to well known data-sets show the goodness of the blurring estimator with respect to other algorithms.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/266136
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact