The light weight and high deformability of bridges made with pultruded FRP (fiber-reinforced polymer) materials make them very promising, but, at the same time, vulnerable to dynamic loadings. As a consequence, the vibration serviceability limit state can govern their design. There is currently a lack of data about the dynamic characteristics of FRP bridges and of design guidelines for securing their vibration serviceability. The paper presents the results of dynamic testing and characterization of an all-FRP spatial footbridge. The main modal parameters of the bridge are evaluated by an experimental modal analysis and by comparison of experimental data with FE analysis results. The identified flexural and torsional modes of the bridge are characterized by relatively high values of frequencies and damping. Results of the dynamic characterization give useful information about the dynamic characteristics of this kind of structures and can contribute to the elaboration of future guidelines for providing them with the vibration serviceability.

Dynamic Characterization of an All-FRP Bridge

RUSSO, SALVATORE;CASALEGNO, CARLO
2017-01-01

Abstract

The light weight and high deformability of bridges made with pultruded FRP (fiber-reinforced polymer) materials make them very promising, but, at the same time, vulnerable to dynamic loadings. As a consequence, the vibration serviceability limit state can govern their design. There is currently a lack of data about the dynamic characteristics of FRP bridges and of design guidelines for securing their vibration serviceability. The paper presents the results of dynamic testing and characterization of an all-FRP spatial footbridge. The main modal parameters of the bridge are evaluated by an experimental modal analysis and by comparison of experimental data with FE analysis results. The identified flexural and torsional modes of the bridge are characterized by relatively high values of frequencies and damping. Results of the dynamic characterization give useful information about the dynamic characteristics of this kind of structures and can contribute to the elaboration of future guidelines for providing them with the vibration serviceability.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/266532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact