We investigate the computing power of function algebras defined by means of unbounded recursion on notation. We introduce two function algebras which contain respectively the regressive logspace computable functions and the non-size-increasing logspace computable functions. However, such algebras are unlikely to be contained in the set of logspace computable functions because this is equivalent to L=P . Finally, we introduce a function algebra based on simultaneous recursion on notation for the non-size-increasing functions computable in polynomial time and linear space.

Unbounded Recursion and Non-size-increasing Functions

MAZZANTI, STEFANO
2016-01-01

Abstract

We investigate the computing power of function algebras defined by means of unbounded recursion on notation. We introduce two function algebras which contain respectively the regressive logspace computable functions and the non-size-increasing logspace computable functions. However, such algebras are unlikely to be contained in the set of logspace computable functions because this is equivalent to L=P . Finally, we introduce a function algebra based on simultaneous recursion on notation for the non-size-increasing functions computable in polynomial time and linear space.
File in questo prodotto:
File Dimensione Formato  
LSPT14-FINAL.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 283.43 kB
Formato Adobe PDF
283.43 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/266891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact