In this paper, the initial part of a laboratory and numerical experimental campaign dedicated to historical masonry is described. One leaf masonry panels with regular texture are built in order to simulate a historical material characterised by strong resisting elements and weak mortar joints. Laboratory tests are first dedicated to masonry components and then to the behaviour in compression of masonry panels, which is applied both orthogonal and parallel to bed joints, in order to highlight the orthotropic behaviour of the material. First of all, the mechanical parameters of masonry constituents are calibrated and then a heterogeneous finite element model is introduced and calibrated for reproducing the orthotropic behaviour of masonry, together with the initial elastic response and the initial nonlinear behaviour due to the first level of damage.
Laboratory and numerical experimentation for masonry in compression
Daniele Baraldi
;Claudia de Carvalho;Antonella Cecchi
2021-01-01
Abstract
In this paper, the initial part of a laboratory and numerical experimental campaign dedicated to historical masonry is described. One leaf masonry panels with regular texture are built in order to simulate a historical material characterised by strong resisting elements and weak mortar joints. Laboratory tests are first dedicated to masonry components and then to the behaviour in compression of masonry panels, which is applied both orthogonal and parallel to bed joints, in order to highlight the orthotropic behaviour of the material. First of all, the mechanical parameters of masonry constituents are calibrated and then a heterogeneous finite element model is introduced and calibrated for reproducing the orthotropic behaviour of masonry, together with the initial elastic response and the initial nonlinear behaviour due to the first level of damage.File | Dimensione | Formato | |
---|---|---|---|
X BARALDI_237000.pdf
non disponibili
Descrizione: Proof dell'articolo
Tipologia:
Documento in Post-print
Licenza:
Accesso ristretto
Dimensione
607.33 kB
Formato
Adobe PDF
|
607.33 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.