This paper presents a study on the potentiality of seismic retrofitting solutions with pultruded Fiber Reinforced Polymer (FRP) profiles. This material can be used in connected frames providing lightweight, corrosion-free and reversible retrofitting of masonry buildings with the moderate requirements of surface preservation. In a hypothetical case study, an experimental program was designed; monotonic shear tests on a half-size physical model of the sample wall were performed to assess the structural performance before and after retrofitting with a basic frame of pultruded Glass Fiber Reinforced Polymer (GFRP) C-shaped profiles, connected to the masonry by steel threaded bar connections. During the tests, the drift, the diagonal displacements in the masonry and the micro-strain in the profiles were measured. The retrofitted system has proven very eective in delaying crack appearance, increasing the maximum load (+85% to +93%) and ultimate displacement (up to +303%). The failure mode switches from rocking to a combination of diagonal cracking and bed joint sliding. The gauge recordings show a very limited mechanical exploitation of the GFRP material, despite the noticeable eectiveness of the retrofit. The application seems thus promising and worth a deeper research focus. Finally, a finite element modelling approach has been developed and validated, and it will be useful to envisage the eects of the proposed solution in future research.

Seismic Retrofitting of Traditional Masonry with Pultruded FRP Profiles

Sciarretta, Francesca
2020-01-01

Abstract

This paper presents a study on the potentiality of seismic retrofitting solutions with pultruded Fiber Reinforced Polymer (FRP) profiles. This material can be used in connected frames providing lightweight, corrosion-free and reversible retrofitting of masonry buildings with the moderate requirements of surface preservation. In a hypothetical case study, an experimental program was designed; monotonic shear tests on a half-size physical model of the sample wall were performed to assess the structural performance before and after retrofitting with a basic frame of pultruded Glass Fiber Reinforced Polymer (GFRP) C-shaped profiles, connected to the masonry by steel threaded bar connections. During the tests, the drift, the diagonal displacements in the masonry and the micro-strain in the profiles were measured. The retrofitted system has proven very eective in delaying crack appearance, increasing the maximum load (+85% to +93%) and ultimate displacement (up to +303%). The failure mode switches from rocking to a combination of diagonal cracking and bed joint sliding. The gauge recordings show a very limited mechanical exploitation of the GFRP material, despite the noticeable eectiveness of the retrofit. The application seems thus promising and worth a deeper research focus. Finally, a finite element modelling approach has been developed and validated, and it will be useful to envisage the eects of the proposed solution in future research.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/282196
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact