Urban and peri-urban areas are subject to major societal challenges, like food security, climate change, biodiversity, resource efficiency, land management, social cohesion, and economic growth. In that context, Urban and Peri-urban Agriculture (UPA), thanks to its multifunctionality, could have a high value in providing social, economic, and environmental co-benefits. UPA is an emerging field of research and production that aims to improve food security and climate change impact reduction, improving urban resilience and sustainability. In this paper, a replicable GIS-based approach was used to localize and quantify available areas for agriculture, including both flat rooftop and ground-level areas in the mainland of the city of Venice (Italy). Then, possible horticultural yield production was estimated considering common UPA yield value and average Italian consumption. Climate change mitigation, like CO2 reduction and sequestration, and climate change adaptation, like Urban Flooding and Urban Heat Island reduction, due to the new UPA areas’ development were estimated. Despite the urban density, the identified areas have the potential to produce enough vegetables for the residents and improve climate change mitigation and adaptation, if transformed into agricultural areas. Finally, the paper concludes with a reflection on the co-benefits of UPA multifunctionality, and with some policy suggestions
Urban and Peri-Urban Agriculture as a Tool for Food Security and Climate Change Mitigation and Adaptation: The Case of Mestre
Lucertini, Giulia
;Di Giustino, Gianmarco
2021-01-01
Abstract
Urban and peri-urban areas are subject to major societal challenges, like food security, climate change, biodiversity, resource efficiency, land management, social cohesion, and economic growth. In that context, Urban and Peri-urban Agriculture (UPA), thanks to its multifunctionality, could have a high value in providing social, economic, and environmental co-benefits. UPA is an emerging field of research and production that aims to improve food security and climate change impact reduction, improving urban resilience and sustainability. In this paper, a replicable GIS-based approach was used to localize and quantify available areas for agriculture, including both flat rooftop and ground-level areas in the mainland of the city of Venice (Italy). Then, possible horticultural yield production was estimated considering common UPA yield value and average Italian consumption. Climate change mitigation, like CO2 reduction and sequestration, and climate change adaptation, like Urban Flooding and Urban Heat Island reduction, due to the new UPA areas’ development were estimated. Despite the urban density, the identified areas have the potential to produce enough vegetables for the residents and improve climate change mitigation and adaptation, if transformed into agricultural areas. Finally, the paper concludes with a reflection on the co-benefits of UPA multifunctionality, and with some policy suggestionsFile | Dimensione | Formato | |
---|---|---|---|
urban and pery urban.pdf
accesso aperto
Tipologia:
Versione Editoriale
Licenza:
Creative commons
Dimensione
2.57 MB
Formato
Adobe PDF
|
2.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.