The seismic safety of existing building stock has become a very critical issue in recent years, mainly in earthquake-prone South Europe where most of the buildings were designed before the enforcement of seismic standards. Therefore, the concept, development and testing of efficient and cost-effective seismic retrofitting technologies are nowadays strongly needed, both for the society and for the scientific community. This study deals with the seismic assessment of a new RC-framed skin for retrofit intervention of existing buildings, evaluated through nonlinear static (pushover) analyses. A preliminary description of the proposed technology is provided, then numerical modeling of a typical RC existing building before and after retrofitting intervention is performed within the OpenSees framework. The results revealed that the proposed retrofitting technology improves the seismic performance of the RC building, also modifying the failure mode from a brittle soft-story mechanism to a more ductile one. The presented study, dedicated to the structural aspects of the system, is part of the TIMESAFE research project, where the thermo-hygrometric and acoustic performances achievable by the proposed RC-framed skin are also investigated

Numerical Assessment of an Innovative RC-Framed Skin for Seismic Retrofit Intervention on Existing Buildings

Talledo, Diego Alejandro;Rocca, Irene;Saetta, Anna
2021-01-01

Abstract

The seismic safety of existing building stock has become a very critical issue in recent years, mainly in earthquake-prone South Europe where most of the buildings were designed before the enforcement of seismic standards. Therefore, the concept, development and testing of efficient and cost-effective seismic retrofitting technologies are nowadays strongly needed, both for the society and for the scientific community. This study deals with the seismic assessment of a new RC-framed skin for retrofit intervention of existing buildings, evaluated through nonlinear static (pushover) analyses. A preliminary description of the proposed technology is provided, then numerical modeling of a typical RC existing building before and after retrofitting intervention is performed within the OpenSees framework. The results revealed that the proposed retrofitting technology improves the seismic performance of the RC building, also modifying the failure mode from a brittle soft-story mechanism to a more ductile one. The presented study, dedicated to the structural aspects of the system, is part of the TIMESAFE research project, where the thermo-hygrometric and acoustic performances achievable by the proposed RC-framed skin are also investigated
File in questo prodotto:
File Dimensione Formato  
Numerical Assessment of an Innovation.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: Creative commons
Dimensione 9.46 MB
Formato Adobe PDF
9.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/306218
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact