The rising availability of public head-related transfer function (HRTF) data, measured on hundreds of different individuals, offers a user the possibility to select the best matching non-individual HRTF from a wide catalogue. To this end, reducing the number of alternatives to a small subset of candidate HRTFs is the first step towards an efficient selection process. In this article a novel HRTF subset selection algorithm based on auditory-model vertical localization predictions and a greedy heuristic is outlined, designed to identify a representative HRTF subset from a catalogue including the three biggest public datasets currently available (373 HRTFs overall). The so-resulting subset (6 HRTFs) is then evaluated on a fourth independent dataset. Auditory model predictions show that for over 95% of the subjects of this dataset there exists at least one HRTF out of the representative subset scoring minimal vertical localization error deviations compared to the best available non-individual HRTF out of the catalogue.

Auditory Model Based Subsetting of Head-Related Transfer Function Datasets

Spagnol, Simone
2020-01-01

Abstract

The rising availability of public head-related transfer function (HRTF) data, measured on hundreds of different individuals, offers a user the possibility to select the best matching non-individual HRTF from a wide catalogue. To this end, reducing the number of alternatives to a small subset of candidate HRTFs is the first step towards an efficient selection process. In this article a novel HRTF subset selection algorithm based on auditory-model vertical localization predictions and a greedy heuristic is outlined, designed to identify a representative HRTF subset from a catalogue including the three biggest public datasets currently available (373 HRTFs overall). The so-resulting subset (6 HRTFs) is then evaluated on a fourth independent dataset. Auditory model predictions show that for over 95% of the subjects of this dataset there exists at least one HRTF out of the representative subset scoring minimal vertical localization error deviations compared to the best available non-individual HRTF out of the catalogue.
2020
978-1-5090-6631-5
File in questo prodotto:
File Dimensione Formato  
ICASSP_2020_author_version.pdf

accesso aperto

Descrizione: Post-print version
Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 147.46 kB
Formato Adobe PDF
147.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/312839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact