Motivated by the need of extracting local trends and low frequency components in non-stationary time series, this paper discusses methods of robust non-parametric smoothing. Basic approach is the combination of the parametric M-estimation with kernel and local polynomial regression methods. The result is an iterative estimator that retains a linear structure, but has kernel weights also in the direction of the prediction errors. The design of smoothing coefficients is carried out with robust cross-validation criteria and rules of thumb. The method works well both to remove the influence of patches of outliers and to detect the local breaks and persistent structural change in time series.

Robust non-parametric smoothing of non-stationary time series

GRILLENZONI, CARLO
2009

Abstract

Motivated by the need of extracting local trends and low frequency components in non-stationary time series, this paper discusses methods of robust non-parametric smoothing. Basic approach is the combination of the parametric M-estimation with kernel and local polynomial regression methods. The result is an iterative estimator that retains a linear structure, but has kernel weights also in the direction of the prediction errors. The design of smoothing coefficients is carried out with robust cross-validation criteria and rules of thumb. The method works well both to remove the influence of patches of outliers and to detect the local breaks and persistent structural change in time series.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/31883
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact