Self-organization and control around flocks and mills is studied for second-order swarming systems involving self-propulsion and potential terms. It is shown that through the action of constrained control, it is possible to control any initial configuration to a flock or a mill. The proof builds on an appropriate combination of several arguments: the LaSalle invariance principle and Lyapunov-like decreasing functionals, control linearization techniques, and quasi-static deformations. A stability analysis of the second-order system guides the design of feedback laws for the stabilization to flock and mills, which are also assessed computationally.
Controlling Swarms toward Flocks and Mills
Rossi, Francesco;
2022-01-01
Abstract
Self-organization and control around flocks and mills is studied for second-order swarming systems involving self-propulsion and potential terms. It is shown that through the action of constrained control, it is possible to control any initial configuration to a flock or a mill. The proof builds on an appropriate combination of several arguments: the LaSalle invariance principle and Lyapunov-like decreasing functionals, control linearization techniques, and quasi-static deformations. A stability analysis of the second-order system guides the design of feedback laws for the stabilization to flock and mills, which are also assessed computationally.File | Dimensione | Formato | |
---|---|---|---|
SwarmControl.pdf
accesso aperto
Tipologia:
Versione Editoriale
Licenza:
Creative commons
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.