We show the existence of Lipschitz-in-space optimal controls for a class of mean-field control problems with dynamics given by a non-local continuity equation. The proof relies on a vanishing viscosity method: we prove the convergence of the same problem where a diffusion term is added, with a small viscosity parameter. By using stochastic optimal control, we first show the existence of a sequence of optimal controls for the problem with diffusion. We then build the optimizer of the original problem by letting the viscosity parameter go to zero.

Vanishing viscosity in mean-field optimal control

Rossi, Francesco
2023-01-01

Abstract

We show the existence of Lipschitz-in-space optimal controls for a class of mean-field control problems with dynamics given by a non-local continuity equation. The proof relies on a vanishing viscosity method: we prove the convergence of the same problem where a diffusion term is added, with a small viscosity parameter. By using stochastic optimal control, we first show the existence of a sequence of optimal controls for the problem with diffusion. We then build the optimizer of the original problem by letting the viscosity parameter go to zero.
File in questo prodotto:
File Dimensione Formato  
cocv230046.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: Creative commons
Dimensione 694.54 kB
Formato Adobe PDF
694.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/331153
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact