We prove a Pontryagin Maximum Principle for optimal control problems in the space of probability measures, where the dynamics is given by a transport equation with non-local velocity. We formulate this first-order optimality condition using the formalism of subdifferential calculus in Wasserstein spaces. We show that the geometric approach based on needle variations and on the evolution of the covector (here replaced by the evolution of a mesure on the dual space) can be translated into this formalism.

The Pontryagin Maximum Principle in the Wasserstein Space

Rossi, Francesco
2019-01-01

Abstract

We prove a Pontryagin Maximum Principle for optimal control problems in the space of probability measures, where the dynamics is given by a transport equation with non-local velocity. We formulate this first-order optimality condition using the formalism of subdifferential calculus in Wasserstein spaces. We show that the geometric approach based on needle variations and on the evolution of the covector (here replaced by the evolution of a mesure on the dual space) can be translated into this formalism.
File in questo prodotto:
File Dimensione Formato  
PMPWass.pdf

non disponibili

Tipologia: Versione Editoriale
Licenza: Accesso ristretto
Dimensione 753.9 kB
Formato Adobe PDF
753.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/331188
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 39
social impact