In this paper, we provide explicitly the connection between the hypoelliptic heat kernel for some 3-step sub-Riemannian manifolds and the quartic oscillator. We study the left-invariant sub-Riemannian structure on two nilpotent Lie groups, namely, the (2,3,4) group (called the Engel group) and the (2,3,5) group (called the Cartan group or the generalized Dido problem). Our main technique is noncommutative Fourier analysis, which permits us to transform the hypoelliptic heat equation into a one-dimensional heat equation with a quartic potential. © 2014 Springer Science+Business Media New York.
Hypoelliptic Heat Kernel Over 3-Step Nilpotent Lie Groups
Rossi, Francesco
2014-01-01
Abstract
In this paper, we provide explicitly the connection between the hypoelliptic heat kernel for some 3-step sub-Riemannian manifolds and the quartic oscillator. We study the left-invariant sub-Riemannian structure on two nilpotent Lie groups, namely, the (2,3,4) group (called the Engel group) and the (2,3,5) group (called the Cartan group or the generalized Dido problem). Our main technique is noncommutative Fourier analysis, which permits us to transform the hypoelliptic heat equation into a one-dimensional heat equation with a quartic potential. © 2014 Springer Science+Business Media New York.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Art234235.pdf
non disponibili
Tipologia:
Versione Editoriale
Licenza:
Accesso ristretto
Dimensione
259.32 kB
Formato
Adobe PDF
|
259.32 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.