In this article, we provide sufficient conditions under which the controlled vector fields solution of optimal control problems formulated on continuity equations are Lipschitz regular in space. Our approach involves a novel combination of mean-field approximations for infinite-dimensional multi-agent optimal control problems, along with a careful extension of an existence result of locally optimal Lipschitz feedbacks. The latter is based on the reformulation of a coercivity estimate in the language of Wasserstein calculus, which is used to obtain uniform Lipschitz bounds along sequences of approximations by empirical measures.
Intrinsic Lipschitz regularity of mean-field optimal controls
Rossi, Francesco
2021-01-01
Abstract
In this article, we provide sufficient conditions under which the controlled vector fields solution of optimal control problems formulated on continuity equations are Lipschitz regular in space. Our approach involves a novel combination of mean-field approximations for infinite-dimensional multi-agent optimal control problems, along with a careful extension of an existence result of locally optimal Lipschitz feedbacks. The latter is based on the reformulation of a coercivity estimate in the language of Wasserstein calculus, which is used to obtain uniform Lipschitz bounds along sequences of approximations by empirical measures.File | Dimensione | Formato | |
---|---|---|---|
Printed.pdf
non disponibili
Tipologia:
Versione Editoriale
Licenza:
Accesso ristretto
Dimensione
538.4 kB
Formato
Adobe PDF
|
538.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.