We prove the existence of the fundamental solution of the degenerate second order partial differential equation related to Geman–Yor stochastic processes, that arise in models for option pricing theory in finance. We then prove pointwise lower and upper bounds for such fundamental solution. Lower bounds are obtained by using repeatedly an invariant Harnack inequality and by solving an associated optimal control problem with quadratic cost. Upper bounds are obtained by the fact that the cost satisfies a specific Hamilton–Jacobi–Bellman equation.
Sharp Estimates for Geman–Yor Processes and applications to Arithmetic Average Asian options
Rossi, Francesco
2019-01-01
Abstract
We prove the existence of the fundamental solution of the degenerate second order partial differential equation related to Geman–Yor stochastic processes, that arise in models for option pricing theory in finance. We then prove pointwise lower and upper bounds for such fundamental solution. Lower bounds are obtained by using repeatedly an invariant Harnack inequality and by solving an associated optimal control problem with quadratic cost. Upper bounds are obtained by the fact that the cost satisfies a specific Hamilton–Jacobi–Bellman equation.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.