At least 10 global digital elevation models (DEMs) at one-arc-second resolution now cover Earth. Comparing derived grids, like slope or curvature, preserves surface spatial relationships, and can be more important than just elevation values. Such comparisons provide more nuanced DEM rankings than just elevation root mean square error (RMSE) for a small number of points. We present three new comparison categories: fraction of unexplained variance (FUV) for grids with continuous floating point values; accuracy metrics for integer code raster classifications; and comparison of stream channel vector networks. We compare six global DEMs that are digital surface models (DSMs), and four edited versions that use machine learning/artificial intelligence techniques to create a bare-earth digital terrain model (DTM) for different elevation ranges: full Earth elevations, under 120 m, under 80 m, and under 10 m. We find edited DTMs improve on elevation values, but because they do not incorporate other metrics in their training they do not improve overall on the source Copernicus DSM. We also rank 17 common geomorphic-derived grids for sensitivity to DEM quality, and document how landscape characteristics, especially slope, affect the results. None of the DEMs perform well in areas with low average slope compared to reference DTMs aggregated from 1 m airborne lidar data. This indicates that accurate work in low-relief areas grappling with global climate change should use airborne lidar or very high resolution image-derived DTMs.

Ranking of 10 Global One-Arc-Second DEMs Reveals Limitations in Terrain Morphology Representation

Trevisani, Sebastiano;
2024-01-01

Abstract

At least 10 global digital elevation models (DEMs) at one-arc-second resolution now cover Earth. Comparing derived grids, like slope or curvature, preserves surface spatial relationships, and can be more important than just elevation values. Such comparisons provide more nuanced DEM rankings than just elevation root mean square error (RMSE) for a small number of points. We present three new comparison categories: fraction of unexplained variance (FUV) for grids with continuous floating point values; accuracy metrics for integer code raster classifications; and comparison of stream channel vector networks. We compare six global DEMs that are digital surface models (DSMs), and four edited versions that use machine learning/artificial intelligence techniques to create a bare-earth digital terrain model (DTM) for different elevation ranges: full Earth elevations, under 120 m, under 80 m, and under 10 m. We find edited DTMs improve on elevation values, but because they do not incorporate other metrics in their training they do not improve overall on the source Copernicus DSM. We also rank 17 common geomorphic-derived grids for sensitivity to DEM quality, and document how landscape characteristics, especially slope, affect the results. None of the DEMs perform well in areas with low average slope compared to reference DTMs aggregated from 1 m airborne lidar data. This indicates that accurate work in low-relief areas grappling with global climate change should use airborne lidar or very high resolution image-derived DTMs.
File in questo prodotto:
File Dimensione Formato  
remotesensing-16-03273-v2.pdf

accesso aperto

Descrizione: paper
Tipologia: Versione Editoriale
Licenza: Creative commons
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/349429
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact