We prove a second order identity for the Kirchhoff equation which yields, in particular, a simple and direct proof of Pokhozhaev's second order conservation law when the nonlinearity has the special form $(C_1 s +C_2)^{-2}$. As applications, we give: an estimate of order $\varepsilon^{-4}$ for the lifespan $T_\varepsilon$ of the solution of the Cauchy problem with initial data of size $\varepsilon$ in Sobolev spaces when the nonlinearity is given by any $C^2$ function $m(s)>0$; a necessary and sufficient condition for boundedness of a second order energy of the solutions.

Notes on a paper of Pokhozhaev

Manfrin, Renato
2023-01-01

Abstract

We prove a second order identity for the Kirchhoff equation which yields, in particular, a simple and direct proof of Pokhozhaev's second order conservation law when the nonlinearity has the special form $(C_1 s +C_2)^{-2}$. As applications, we give: an estimate of order $\varepsilon^{-4}$ for the lifespan $T_\varepsilon$ of the solution of the Cauchy problem with initial data of size $\varepsilon$ in Sobolev spaces when the nonlinearity is given by any $C^2$ function $m(s)>0$; a necessary and sufficient condition for boundedness of a second order energy of the solutions.
File in questo prodotto:
File Dimensione Formato  
non_36_10_5609.pdf

non disponibili

Tipologia: Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 140.17 kB
Formato Adobe PDF
140.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/354933
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact