Abstract. Given three segments OP1,OP2,OP3 in a plane ω, which are not contained in a line, we find a simple condition for the existence of two distinct ellipses centered at O and circumscribing the three ellipses having as conjugate semi-diameters the pairs (OP1,OP2), (OP2,OP3) and (OP3,OP1). We prove this result by showing that it is equivalent to the existence of a secondary Pohlke’s projection closely related to the (always existing) projection given by Pohlke’s theorem of oblique axonometry

A note on a secondary Pohlke's projection

Manfrin Renato
2022-01-01

Abstract

Abstract. Given three segments OP1,OP2,OP3 in a plane ω, which are not contained in a line, we find a simple condition for the existence of two distinct ellipses centered at O and circumscribing the three ellipses having as conjugate semi-diameters the pairs (OP1,OP2), (OP2,OP3) and (OP3,OP1). We prove this result by showing that it is equivalent to the existence of a secondary Pohlke’s projection closely related to the (always existing) projection given by Pohlke’s theorem of oblique axonometry
File in questo prodotto:
File Dimensione Formato  
4. 33-53.pdf

non disponibili

Tipologia: Versione Editoriale
Licenza: Accesso ristretto
Dimensione 835.78 kB
Formato Adobe PDF
835.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/354935
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact