L’articolo descrive e classifica sei diversi casi studio di soluzioni “phigital”, ovvero integrazione del digitale in un prodotto fisico, applicate al mondo dell’agroalimentare. Tra gli obiettivi, oltre all’analisi delle potenzialità di questo tipo di soluzioni nell’approccio alla sostenibilità e nella duplice transizione, rientra anche quella del ruolo che può svolgere il Product Designer e quali competenze sono strategiche per ricoprirlo. La metodologia di ricerca si basa sulla classificazione dei casi studio, individuati sia da attività didattiche, sia da ricerche, secondo i 16 principi, desunti dalla letteratura scientifica, che definiscono la Ecodesign Strategy: durabilità, affidabilità, riusabilità, aggiornabilità, riparabilità, manutenzione e ristrutturazione, presenza di sostanze nocive, efficienza energetica, uso efficiente dell’acqua, uso efficiente delle risorse, contenuto riciclabile, possibilità di rigenerazione, riciclabilità, recupero di materiale, impatto ambientale e impronta di carbonio, generazione di rifiuti. Il contributo mette sostanzialmente in evidenza il ruolo del design, identificando come questo influisce sulla definizione di prodotti phygital innovativi secondo gli ultimi requisiti di ecodesign proponendo contestualmente un approccio progettuale basato su specifiche conoscenze sui temi della sostenibilità e sul paradigma culturale sistemico. Abstract: Agrifood system products and techniques should be designed/redesigned to be sustainable, reducing their environmental impact (Farm to Fork European strategy, EC, 2020). The environmental transition cannot forget the digital one and its potential, as also recalled by the European Industrial Strategy (EC, 2020) that pushes towards the “twin transition”, the combination of digitalisation and the green revolution. ICTs are only a part of all technologies, however, in the digital economy, data and information have gained great importance that they are often considered a new factor of production (Zhong et al., 2023). In the agrifood sector, the first digital applications were mainly those of precision farming but, recently, the technological development and reduction of hardware and sensor costs have made it possible to massively integrate the immaterial and physical dimensions of digital (e.g. light robotics, automation, IoT, smart packaging, etc.) within the whole food supply chain. In the Italian agrifood sector, smart technologies are mainly used for monitoring and control systems of equipment (25%), connected equipment (23%), cultures/lands monitoring and control systems (15%) (Osservatorio SmartAgrifood, 2023). ICTs could play a primary role in transforming the whole food system (Massari et al., 2023), but they do not only positively impact sustainability. Dematerialisation and digitalisation, including AI, are not inherently green and sustainable (Crawford, 2021). Moreover, the quantity of e-waste increased by 21% in just five years before 2019 (Forti et al., 2020). This paper mainly aims to investigate how the design discipline can contribute to developing new phygital solutions leading to a circular and sustainable food system transition. To contribute to the critical debate around the potential of phygital for a sustainable food system transition, this research investigates whether digital really improves sustainability or is just a market trend, by conducting a retrospective study on case studies developed in Università Iuav di Venezia (IT). Selected cases cover different parts of the food value chain: agriculture (e.g. phytopathological prediction and detection system in the wine sector), food packaging (e.g. augmented reality) and food service (e.g. water consumption monitoring). The research methodology focuses on the role of design identifying how it impacts the definition of innovative phygital products according to circular economy strategies identified by Potting et al. (2017). Study cases are also classified by value chain application sector and ICT contribution to create a more complete evaluation frame. The results highlight that the designers' main contribution relates to the definition of innovation, sustainability compliance, aesthetics and ergonomics, the service and system related to new products, as well as to the phygital interaction design, smart packaging, data collection and management, prototyping and user test. Production-digital-environmental projects are complex and involve many skills and knowledge; here, the design professional plays a significant role in keeping all the vertical contributions together without forgetting the objectives and purposes of the final product. Moreover, this design approach requires a specific education and knowledge on sustainability issues and systemic cultural paradigm precisely to not lose that particular goal. Crawford, K. (2021). Né intelligente né artificiale. Il lato oscuro dell'IA [Atlas of Ai: Power, Politics, and the Planetary Costs of Artificial Intelligence]. Il Mulino, Bologna. European Commission (2020). Farm to fork strategy. Retrieved March 7, 2023 from https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf European Commission (2020). European industrial strategy. Retrieved March 7, 2023 from https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-industrial-strategy_en Forti, V., Baldé, C. P., Kuehr, R., & Bel, G. (2020). The global e-waste monitor 2020. United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam, 120. Massari, S., Marti, P., & Recupero, A. (2023). Designing digital technologies for sustainable transformations of food systems. International Journal of Food Design, 8(1), 3-12. Osservatorio SmartAgrifood (2024). “Nel 2023 l’Agricoltura 4.0 italiana raggiunge 2,5 miliardi di euro, +19%”. https://www.osservatori.net/it/ricerche/comunicati-stampa//agricoltura-4-0-2023 [15/03/2024] Potting, J., Hekkert, M. P., Worrell, E., & Hanemaaijer, A. (2017). Circular economy: measuring innovation in the product chain. Planbureau voor de Leefomgeving, (2544). https://www.pbl.nl/uploads/default/downloads/pbl-2016-circular-economy-measuring-innovation-in-product-chains-2544.pdf Zhong, M., Fu, J. & Zou, H. (2023). The data as a production factor: nonlinear effects of factor efficiency on haze pollution. Environment, Development and Sustainability. 1-26. 10.1007/s10668-023-04264-z.

Design of phygital products for the twin transition in the food system

C. Battistoni
;
G. Borga;L. Badalucco
In corso di stampa

Abstract

L’articolo descrive e classifica sei diversi casi studio di soluzioni “phigital”, ovvero integrazione del digitale in un prodotto fisico, applicate al mondo dell’agroalimentare. Tra gli obiettivi, oltre all’analisi delle potenzialità di questo tipo di soluzioni nell’approccio alla sostenibilità e nella duplice transizione, rientra anche quella del ruolo che può svolgere il Product Designer e quali competenze sono strategiche per ricoprirlo. La metodologia di ricerca si basa sulla classificazione dei casi studio, individuati sia da attività didattiche, sia da ricerche, secondo i 16 principi, desunti dalla letteratura scientifica, che definiscono la Ecodesign Strategy: durabilità, affidabilità, riusabilità, aggiornabilità, riparabilità, manutenzione e ristrutturazione, presenza di sostanze nocive, efficienza energetica, uso efficiente dell’acqua, uso efficiente delle risorse, contenuto riciclabile, possibilità di rigenerazione, riciclabilità, recupero di materiale, impatto ambientale e impronta di carbonio, generazione di rifiuti. Il contributo mette sostanzialmente in evidenza il ruolo del design, identificando come questo influisce sulla definizione di prodotti phygital innovativi secondo gli ultimi requisiti di ecodesign proponendo contestualmente un approccio progettuale basato su specifiche conoscenze sui temi della sostenibilità e sul paradigma culturale sistemico. Abstract: Agrifood system products and techniques should be designed/redesigned to be sustainable, reducing their environmental impact (Farm to Fork European strategy, EC, 2020). The environmental transition cannot forget the digital one and its potential, as also recalled by the European Industrial Strategy (EC, 2020) that pushes towards the “twin transition”, the combination of digitalisation and the green revolution. ICTs are only a part of all technologies, however, in the digital economy, data and information have gained great importance that they are often considered a new factor of production (Zhong et al., 2023). In the agrifood sector, the first digital applications were mainly those of precision farming but, recently, the technological development and reduction of hardware and sensor costs have made it possible to massively integrate the immaterial and physical dimensions of digital (e.g. light robotics, automation, IoT, smart packaging, etc.) within the whole food supply chain. In the Italian agrifood sector, smart technologies are mainly used for monitoring and control systems of equipment (25%), connected equipment (23%), cultures/lands monitoring and control systems (15%) (Osservatorio SmartAgrifood, 2023). ICTs could play a primary role in transforming the whole food system (Massari et al., 2023), but they do not only positively impact sustainability. Dematerialisation and digitalisation, including AI, are not inherently green and sustainable (Crawford, 2021). Moreover, the quantity of e-waste increased by 21% in just five years before 2019 (Forti et al., 2020). This paper mainly aims to investigate how the design discipline can contribute to developing new phygital solutions leading to a circular and sustainable food system transition. To contribute to the critical debate around the potential of phygital for a sustainable food system transition, this research investigates whether digital really improves sustainability or is just a market trend, by conducting a retrospective study on case studies developed in Università Iuav di Venezia (IT). Selected cases cover different parts of the food value chain: agriculture (e.g. phytopathological prediction and detection system in the wine sector), food packaging (e.g. augmented reality) and food service (e.g. water consumption monitoring). The research methodology focuses on the role of design identifying how it impacts the definition of innovative phygital products according to circular economy strategies identified by Potting et al. (2017). Study cases are also classified by value chain application sector and ICT contribution to create a more complete evaluation frame. The results highlight that the designers' main contribution relates to the definition of innovation, sustainability compliance, aesthetics and ergonomics, the service and system related to new products, as well as to the phygital interaction design, smart packaging, data collection and management, prototyping and user test. Production-digital-environmental projects are complex and involve many skills and knowledge; here, the design professional plays a significant role in keeping all the vertical contributions together without forgetting the objectives and purposes of the final product. Moreover, this design approach requires a specific education and knowledge on sustainability issues and systemic cultural paradigm precisely to not lose that particular goal. Crawford, K. (2021). Né intelligente né artificiale. Il lato oscuro dell'IA [Atlas of Ai: Power, Politics, and the Planetary Costs of Artificial Intelligence]. Il Mulino, Bologna. European Commission (2020). Farm to fork strategy. Retrieved March 7, 2023 from https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf European Commission (2020). European industrial strategy. Retrieved March 7, 2023 from https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-industrial-strategy_en Forti, V., Baldé, C. P., Kuehr, R., & Bel, G. (2020). The global e-waste monitor 2020. United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam, 120. Massari, S., Marti, P., & Recupero, A. (2023). Designing digital technologies for sustainable transformations of food systems. International Journal of Food Design, 8(1), 3-12. Osservatorio SmartAgrifood (2024). “Nel 2023 l’Agricoltura 4.0 italiana raggiunge 2,5 miliardi di euro, +19%”. https://www.osservatori.net/it/ricerche/comunicati-stampa//agricoltura-4-0-2023 [15/03/2024] Potting, J., Hekkert, M. P., Worrell, E., & Hanemaaijer, A. (2017). Circular economy: measuring innovation in the product chain. Planbureau voor de Leefomgeving, (2544). https://www.pbl.nl/uploads/default/downloads/pbl-2016-circular-economy-measuring-innovation-in-product-chains-2544.pdf Zhong, M., Fu, J. & Zou, H. (2023). The data as a production factor: nonlinear effects of factor efficiency on haze pollution. Environment, Development and Sustainability. 1-26. 10.1007/s10668-023-04264-z.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/359029
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact