Architects and building designers are pivotal in mitigating climate change by shaping the environmental footprint of buildings from their inception, with life cycle assessment (LCA) serving as a crucial tool for quantifying these impacts. Given that structural systems contribute significantly to embodied carbon, accounting for approximately 24% of a building’s life cycle emissions, this research investigates the relationship between structural span length—a key design factor influencing material choices and construction methods—and overall environmental performance. Through a scenario-based analysis employing building information modeling (BIM) and whole building life cycle assessment (WBLCA) tools, this study evaluates various building configurations to reveal that in long-span scenarios, steel demonstrates a lower environmental impact compared to timber. This finding offers a novel, quantifiable insight for architects and designers to assess and optimize building designs, particularly in the context of emerging architectural trends featuring longer spans, ultimately contributing to more sustainable building practices.

Exploring the Impact of Span Length on Environmental Performance: A Comparative Study

Perrucci, Giovanni
Writing – Original Draft Preparation
;
Trabucco, Dario
Methodology
2025-01-01

Abstract

Architects and building designers are pivotal in mitigating climate change by shaping the environmental footprint of buildings from their inception, with life cycle assessment (LCA) serving as a crucial tool for quantifying these impacts. Given that structural systems contribute significantly to embodied carbon, accounting for approximately 24% of a building’s life cycle emissions, this research investigates the relationship between structural span length—a key design factor influencing material choices and construction methods—and overall environmental performance. Through a scenario-based analysis employing building information modeling (BIM) and whole building life cycle assessment (WBLCA) tools, this study evaluates various building configurations to reveal that in long-span scenarios, steel demonstrates a lower environmental impact compared to timber. This finding offers a novel, quantifiable insight for architects and designers to assess and optimize building designs, particularly in the context of emerging architectural trends featuring longer spans, ultimately contributing to more sustainable building practices.
2025
Inglese
17
9
1
21
21
Internazionale
https://doi.org/ 10.3390/su17094183
LCA; life cycle assessment; GWP; global warming potential; embodied carbon; structural span; steel; timber
no
open
1. Contributo su Rivista::1.1 Articolo su Rivista
info:eu-repo/semantics/article
262
Perrucci, Giovanni; Trabucco, Dario
2
File in questo prodotto:
File Dimensione Formato  
sustainability-17-04183.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: Creative commons
Dimensione 4.87 MB
Formato Adobe PDF
4.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/361249
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact