Positive percentage time series are present in many empirical applications; they take values in the continuous interval (0,1) and are often modeled with linear dynamic models. Risks of biased predictions (outside the admissible range) and problems of heteroskedasticity in the presence of asymmetric distributions are ignored by practitioners. Alternative models are proposed in the statistical literature; the most suitable is the dynamic beta regression which belongs to generalized linear models (GLM) and uses the logit transformation as a link function. However, owing to the Jensen inequality, this approach may also not be optimal in prediction; thus, the aim of the present paper is the in-depth forecasting comparison of linear and beta autoregressions. Simulation experiments and applications to nonstationary time series (the US unemployment rate and BR hydroelectric energy) are carried out. Rolling regression for time-varying parameters is applied to both linear and beta models, and a prediction criterion for the joint selection of model order and sample size is defined.

Comparison of Linear and Beta Autoregressive Models in Forecasting Nonstationary Percentage Time Series

Grillenzoni, Carlo
2025-01-01

Abstract

Positive percentage time series are present in many empirical applications; they take values in the continuous interval (0,1) and are often modeled with linear dynamic models. Risks of biased predictions (outside the admissible range) and problems of heteroskedasticity in the presence of asymmetric distributions are ignored by practitioners. Alternative models are proposed in the statistical literature; the most suitable is the dynamic beta regression which belongs to generalized linear models (GLM) and uses the logit transformation as a link function. However, owing to the Jensen inequality, this approach may also not be optimal in prediction; thus, the aim of the present paper is the in-depth forecasting comparison of linear and beta autoregressions. Simulation experiments and applications to nonstationary time series (the US unemployment rate and BR hydroelectric energy) are carried out. Rolling regression for time-varying parameters is applied to both linear and beta models, and a prediction criterion for the joint selection of model order and sample size is defined.
File in questo prodotto:
File Dimensione Formato  
forecasting-07-00057-v2 (1).pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: Creative commons
Dimensione 887.36 kB
Formato Adobe PDF
887.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/369270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact