This paper develops non-parametric techniques for dynamic models whose data have unknown probability distributions. Point estimators are obtained from the maximization of a semiparametric likelihood function built on the kernel density of the disturbances. This approach can also provide Kullback–Leibler cross-validation estimates of the bandwidth of the kernel densities. Confidence regions are derived from the dual-empirical likelihood method based on non-parametric estimates of the scores. Limit theorems for martingale difference sequences support the statistical theory; moreover, simulation experiments and a real case study show the validity of the methods.

Kernel Likelihood Inference for Time Series

GRILLENZONI, CARLO
2009-01-01

Abstract

This paper develops non-parametric techniques for dynamic models whose data have unknown probability distributions. Point estimators are obtained from the maximization of a semiparametric likelihood function built on the kernel density of the disturbances. This approach can also provide Kullback–Leibler cross-validation estimates of the bandwidth of the kernel densities. Confidence regions are derived from the dual-empirical likelihood method based on non-parametric estimates of the scores. Limit theorems for martingale difference sequences support the statistical theory; moreover, simulation experiments and a real case study show the validity of the methods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11578/43888
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact