This article introduces a general class of nonlinear and nonstationary time series models whose basic scheme is an autoregressive integrated moving average (ARIMA). The main feature is that the parameters are assumed to behave like a vector ARIMAx model in which the exogenous (x) component is represented by the regressors of the observable process. For this class a general algorithm of identification-estimation is outlined, based on the sampling information alone. The initial estimation, in particular, consists of an iterative procedure of nonlinear regressions on recursive parameter estimates generated with the extended Kalman filter. An empirical example on real economic data illustrates the method and compares alternative criteria of estimation.

ARIMA Processes With ARIMA Parameters

GRILLENZONI, CARLO
1993

Abstract

This article introduces a general class of nonlinear and nonstationary time series models whose basic scheme is an autoregressive integrated moving average (ARIMA). The main feature is that the parameters are assumed to behave like a vector ARIMAx model in which the exogenous (x) component is represented by the regressors of the observable process. For this class a general algorithm of identification-estimation is outlined, based on the sampling information alone. The initial estimation, in particular, consists of an iterative procedure of nonlinear regressions on recursive parameter estimates generated with the extended Kalman filter. An empirical example on real economic data illustrates the method and compares alternative criteria of estimation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11578/55092
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact