We introduce a new formulation for differential equation describing dynamics of measures on an Euclidean space, that we call Measure Differential Equations with sources. They mix two different phenomena: on one side, a transport-type term, in which a vector field is replaced by a Probability Vector Field, that is a probability distribution on the tangent bundle; on the other side, a source term. Such new formulation allows to write in a unified way both classical transport and diffusion with finite speed, together with creation of mass. The main result of this article shows that, by introducing a suitable Wasserstein-like functional, one can ensure existence of solutions to Measure Differential Equations with sources under Lipschitz conditions. We also prove a uniqueness result under the following additional hypothesis: the measure dynamics needs to be compatible with dynamics of measures that are sums of Dirac masses.
Measure dynamics with probability vector fields and sources
Rossi, Francesco
2019-01-01
Abstract
We introduce a new formulation for differential equation describing dynamics of measures on an Euclidean space, that we call Measure Differential Equations with sources. They mix two different phenomena: on one side, a transport-type term, in which a vector field is replaced by a Probability Vector Field, that is a probability distribution on the tangent bundle; on the other side, a source term. Such new formulation allows to write in a unified way both classical transport and diffusion with finite speed, together with creation of mass. The main result of this article shows that, by introducing a suitable Wasserstein-like functional, one can ensure existence of solutions to Measure Differential Equations with sources under Lipschitz conditions. We also prove a uniqueness result under the following additional hypothesis: the measure dynamics needs to be compatible with dynamics of measures that are sums of Dirac masses.File | Dimensione | Formato | |
---|---|---|---|
Measure_dynamics_with_Probability_Vector_Fields_an.pdf
accesso aperto
Tipologia:
Versione Editoriale
Licenza:
Creative commons
Dimensione
542.47 kB
Formato
Adobe PDF
|
542.47 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.